SCHEME OF EXAMINATION

&

SYLLABi

for

B. TECH. COMPUTER SCIENCE & ENGINEERING
SECOND YEAR (III & IV Semester)
(Effective from the session: 2010-2011)

Uttrakhand Technical University, Dehradun
www.uktech.in
COURSES OF STUDY, SCHEME OF EXAMINATION & SYLLABUS FOR B.TECH CSE

Semester-III

<table>
<thead>
<tr>
<th>Subject Code</th>
<th>Subject</th>
<th>Contact Hrs.</th>
<th>Credit</th>
</tr>
</thead>
<tbody>
<tr>
<td>TCS-301</td>
<td>Discrete Structures</td>
<td>3-1-0</td>
<td>4</td>
</tr>
<tr>
<td>TCS-302</td>
<td>Computer Based Numerical & Statistical Techniques</td>
<td>2-0-0</td>
<td>2</td>
</tr>
<tr>
<td>TCS-303</td>
<td>Data Structures</td>
<td>3-1-0</td>
<td>4</td>
</tr>
<tr>
<td>TEC-301</td>
<td>Digital Electronics & Design Aspect</td>
<td>3-1-0</td>
<td>4</td>
</tr>
<tr>
<td>TCS-304</td>
<td>Object Oriented Programming</td>
<td>3-1-0</td>
<td>4</td>
</tr>
<tr>
<td>THU-301</td>
<td>Engineering Economics & Costing</td>
<td>2-0-0</td>
<td>2</td>
</tr>
</tbody>
</table>

PRACTICAL:

<table>
<thead>
<tr>
<th>Subject Code</th>
<th>Subject</th>
<th>Contact Hrs.</th>
<th>Credit</th>
</tr>
</thead>
<tbody>
<tr>
<td>PCS-302</td>
<td>Computer Based Numerical & Statistical Techniques Lab</td>
<td>0 0 2</td>
<td>2</td>
</tr>
<tr>
<td>PCS-303</td>
<td>Data Structure Lab</td>
<td>0 0 2</td>
<td>2</td>
</tr>
<tr>
<td>PEC-350</td>
<td>Digital Electronics</td>
<td>0 0 2</td>
<td>2</td>
</tr>
<tr>
<td>PCS-304</td>
<td>Object oriented programming using Java/ C++</td>
<td>0 0 2</td>
<td>2</td>
</tr>
<tr>
<td>PD III /GP III</td>
<td>Personality Development/ General Proficiency</td>
<td>0 0 2</td>
<td>-</td>
</tr>
</tbody>
</table>

TOTAL 28

Semester-IV

<table>
<thead>
<tr>
<th>Subject Code</th>
<th>Subject</th>
<th>Contact Hrs.</th>
<th>Credit</th>
</tr>
</thead>
<tbody>
<tr>
<td>TCS-401</td>
<td>Computer Organization</td>
<td>3-1-0</td>
<td>4</td>
</tr>
<tr>
<td>TCS-402</td>
<td>Unix & Shell Programming</td>
<td>2-0-0</td>
<td>2</td>
</tr>
<tr>
<td>TCS-403</td>
<td>Theory Of Automata & Formal Language</td>
<td>3-1-0</td>
<td>4</td>
</tr>
<tr>
<td>TCS-404</td>
<td>Database Management System</td>
<td>3-1-0</td>
<td>4</td>
</tr>
<tr>
<td>TCS-405</td>
<td>Microprocessor</td>
<td>3-1-0</td>
<td>4</td>
</tr>
<tr>
<td>TCS-406</td>
<td>Software Engineering</td>
<td>2-0-0</td>
<td>2</td>
</tr>
</tbody>
</table>

Practical

<table>
<thead>
<tr>
<th>Subject Code</th>
<th>Subject</th>
<th>Contact Hrs.</th>
<th>Credit</th>
</tr>
</thead>
<tbody>
<tr>
<td>PCS-402</td>
<td>Unix & Shell Programming Lab</td>
<td>0-0-2</td>
<td>2</td>
</tr>
<tr>
<td>PCS-404</td>
<td>Database Management System Lab</td>
<td>0-0-2</td>
<td>2</td>
</tr>
<tr>
<td>PCS-405</td>
<td>Microprocessor Lab</td>
<td>0-0-2</td>
<td>2</td>
</tr>
<tr>
<td>PCS 407</td>
<td>Seminar</td>
<td>0-0-2</td>
<td>2</td>
</tr>
<tr>
<td>PD IV /GP IV</td>
<td>Personality Development/ General Proficiency</td>
<td>0 0 2</td>
<td>-</td>
</tr>
</tbody>
</table>

TOTAL 28
<table>
<thead>
<tr>
<th>S. No.</th>
<th>SUBJECT CODE</th>
<th>SUBJECT</th>
<th>PERIODS</th>
<th>EVALUATION SCHEME</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>L T P</td>
<td>SESSIONAL EXAM</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>CT TA Total</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>TEC-301</td>
<td>Discrete Structures</td>
<td>3 1 0</td>
<td>30 20 50</td>
</tr>
<tr>
<td>2</td>
<td>TCS-302</td>
<td>Computer Based Numerical & Statistical Techniques</td>
<td>2 0 0</td>
<td>15 10 25</td>
</tr>
<tr>
<td>3</td>
<td>TCS-303</td>
<td>Data Structures</td>
<td>3 1 0</td>
<td>30 20 50</td>
</tr>
<tr>
<td>4</td>
<td>TEC-301</td>
<td>Digital Electronics & Design Aspect</td>
<td>3 1 0</td>
<td>30 20 50</td>
</tr>
<tr>
<td>5</td>
<td>TCS-304</td>
<td>Object Oriented Programming</td>
<td>3 1 0</td>
<td>30 20 50</td>
</tr>
<tr>
<td>6</td>
<td>THU-301</td>
<td>Engineering Economics & Costing</td>
<td>2 0 0</td>
<td>15 10 25</td>
</tr>
</tbody>
</table>

PRACTICALS

<table>
<thead>
<tr>
<th></th>
<th>PCS-350</th>
<th>Digital Electronics Lab</th>
<th>0 0 2</th>
<th>25 25 25</th>
<th>50</th>
</tr>
</thead>
<tbody>
<tr>
<td>7</td>
<td>PCS-302</td>
<td>Computer Based Numerical & Statistical Techniques Lab</td>
<td>0 0 2</td>
<td>25 25 25</td>
<td>50</td>
</tr>
<tr>
<td>8</td>
<td>PCS-303</td>
<td>Data Structure Lab</td>
<td>0 0 2</td>
<td>25 25 25</td>
<td>50</td>
</tr>
<tr>
<td>9</td>
<td>PCS-304</td>
<td>Object Oriented programming Lab using Java/C++</td>
<td>0 0 2</td>
<td>25 25 25</td>
<td>50</td>
</tr>
<tr>
<td>10</td>
<td>PD III /GP III</td>
<td>Personality Development/ General Proficiency</td>
<td>0 0 2</td>
<td>50</td>
<td>50</td>
</tr>
</tbody>
</table>

Total | 1000
Semester-IV

<table>
<thead>
<tr>
<th>S. No.</th>
<th>SUBJECT CODE</th>
<th>SUBJECT</th>
<th>PERIODS</th>
<th>EVALUATION SCHEME</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>L</td>
<td>T</td>
</tr>
<tr>
<td>1</td>
<td>TCS-401</td>
<td>Computer Organization</td>
<td>3</td>
<td>1</td>
</tr>
<tr>
<td>2</td>
<td>TCS-402</td>
<td>UNIX & Shell Programming</td>
<td>2</td>
<td>0</td>
</tr>
<tr>
<td>3</td>
<td>TCS-403</td>
<td>Theory Of Automata & Formal Language</td>
<td>3</td>
<td>1</td>
</tr>
<tr>
<td>4</td>
<td>TCS-404</td>
<td>Database Management System</td>
<td>3</td>
<td>1</td>
</tr>
<tr>
<td>5</td>
<td>TCS-405</td>
<td>Microprocessor</td>
<td>3</td>
<td>1</td>
</tr>
<tr>
<td>6</td>
<td>TCS-406</td>
<td>Software Engineering</td>
<td>2</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>PCS-402</td>
<td>UNIX & Shell Programming Lab</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>8</td>
<td>PCS-404</td>
<td>Database Management System Lab</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>9.</td>
<td>PCS-405</td>
<td>Microprocessor Lab</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>10</td>
<td>PCS-407</td>
<td>Seminar-I</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>11</td>
<td>PD IV /GP IV</td>
<td>Personality Development/ General Proficiency</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Unit-I (10L)
Set Theory: Definition of sets, countable and uncountable sets, Venn Diagrams, proofs of some general identities on sets
Function: Definition, type of function, one to one, into and onto function, inverse function, composition of functions, recursively defined functions.
Theorem proving Techniques: mathematical induction (simple and strong), pigeonhole principle, prove by contradiction.

Unit-II (8L)
Algebraic Structures: Definition, Properties, types: Semi Groups, Monoid, Groups, Abelian group, properties of groups, Subgroup, cyclic groups, Cosets, factor group, Permutation groups, Normal subgroup, Homomorphism and isomorphism of Groups, example and standard results, Rings and Fields: definition and standard results.

Unit-III (8L)

Unit-IV (8L)
Propositional Logic: Proposition, First order logic, Basic logical operation, truth tables, tautologies, Contradictions, Algebra of Proposition, logical implications, logical equivalence, predicates, Universal and existential quantifiers.

Unit-V (6L)
Combinatorics & Graphs: Recurrence Relation, Generating function., Permutation & Combination, Probabilistic Permutation & Combination

Textbooks:

Reference Book:
2. C.L.Liu, ‘Discrete Mathematics’ TMH.
Unit-I

Solution of Algebraic and Transcendental Equation:
Bisection Method, Iteration method, Method of false position, Newton-Raphson method, Methods of finding complex roots, Muller’s method, Rate of convergence of Iterative methods, Polynomial Equations.

Unit-II
Interpolation: Finite Differences, Difference tables Polynomial Interpolation: Newton’s forward and backward formula Central Difference Formulae: Gauss forward and backward formula, Stirling’s, Bessel’s, Everett’s formula.
Interpolation with unequal intervals: Langrange’s Interpolation, Newton Divided difference formula, Hermite’s Interpolation

Unit-III

Unit-IV
Statistical Computation: Frequency chart, Curve fitting by method of least squares, fitting of straight lines, polynomials, exponential curves etc, Data fitting with Cubic splines, Regression Analysis, Linear and Non linear Regression, Multiple regression, Statistical Quality Control methods.

Text Books:

References:
UNIT – I
Introduction: Basic Terminology, Elementary Data Organization, Structure operations, Algorithm Complexity and Time-Space trade-off

Arrays: Array Definition, Representation and Analysis, Single and Multidimensional Arrays, address calculation, application of arrays, Character String in C, Character string operation, Array as Parameters, Ordered List, Sparse Matrices and Vectors.

Recursion: Recursive definition and processes, recursion, example of recursion, Tower of Hanoi Problem, simulating recursion, Backtracking, recursive algorithms.

UNIT – II
Queues: Array and linked representation and implementation of queues, Operations on Queue: Create, Add, Delete, Full and Empty, Circular queues, D-queues and Priority Queues.

Linked list: Representation and Implementation of Singly Linked Lists, Two-way Header List, Traversing and Searching of Linked List, Overflow and Underflow, Insertion and deletion to/from Linked Lists, Insertion and deletion Algorithms, Doubly linked list, Linked List in Array, Polynomial representation and addition, Garbage Collection and Compaction.

UNIT – III

Binary Search Trees: Binary Search Tree (BST), Insertion and Deletion in BST, Complexity of Search Algorithm.

UNIT – IV
Searching and Hashing: Sequential search, binary search, comparison and analysis, Hash Table, Hash Functions, Collision Resolution Strategies, Hash Table Implementation.

Sorting: Insertion Sort, Bubble Sort, Quick Sort, Two Way Merge Sort, Heap Sort, Sorting on Different Keys.

UNIT – V
File Structures: Physical Storage Media File Organization, Organization of records into Blocks, Sequential Files, Indexing and Hashing, Primary indices, Secondary indices, B+ Tree index Files, B Tree index Files, Indexing and Hashing Comparisons.

Text Books:
Reference books:

TEC-301
DIGITAL ELECTRONICS & AND DESIGN ASPECT

Unit-I : Introduction (8L)
Characteristics of digital system, Types of Digital circuits, Number system: Direct conversion between bases Negative numbers & BCD and their arithmetic’s, Boolean algebra, Minimization of Boolean Functions: K Map upto 6 variable and multiple output circuits error detection & correcting codes, Hamming & cyclic codes quine mcclusky method

Unit-II : Combinational Logic Circuits (8L)
Design Procedure, adders, subtractors & code conversion, Multiplexers/Demultiplexers, encoder/decoders, decimal adders & amplitude comparators, ROM as decoder, PLA & PAL. DRC, RDC.

Unit-III : Sequential Logic Circuits (8L)
Flip-Flops and their conversions, analysis and synthesis of synchronous sequential circuit, excitation table, state table & diagram. Design of synchronous counters, shift registers and their applications

Unit-IV : Logic Families (8L)
Diode, BJT & MOS as a switching element concept of transfer characteristics, Input characteristics and output characteristics of logic gates, TTL, IIL,ECL,NMOS,CMOS Tri-state logic, open collector output, Interfacing between logic families, packing density, power consumption & gate delay.

Unit-V : Hazard ,Fault Detection &Memories (8L)
Hazard and Fault Detection: Static and dynamic Hazard: Gate delay, Generation of spikes, Determination of hazard in combinational circuits, Fault detection methods: Fault Table & Path sensitizing methods.

Memories: Sequential, Random Access, NMOS & CMOS Static and Dynamic Memory elements, one and multi-dimensional selection arrangement, Read-only memories, Formation of memory banks, internal & External address decoding

Text Books :
UNIT I
Object Modeling: Objects and classes, links and association, generalization and inheritance, aggregation, abstract class, multiple inheritance, meta data, candidate keys, constraints. Dynamic Modeling: Events and states, operations, nested state diagrams and concurrency, advanced dynamic modeling concepts, a sample dynamic model.

UNIT II
Functional Modeling: Data flow diagram, specifying operations, constraints, a sample functional model. OMT (object modeling techniques) methodologies, examples and case studies to demonstrate methodologies, comparisons of methodologies, SA/SD, JSD.

UNIT III

UNIT IV

UNIT V
Software Development using Java: Java Swing, Migrating from C++ to java, Application of java, JDBC.

Text Books:

References:
THU-301

ENGINEERING ECONOMICS AND COSTING

L T P
2 0 0

Unit I (6L)
Time value of money: Simple and compound interest, Time value equivalence, Compound interest factors, Cash flow diagrams, Calculation, Calculation of time—value equivalences. Present worth comparisons, Comparisons of assets with equal, unequal and infinite lives, comparison of deferred investments, Future worth comparison, pay back period comparison.

Unit II (6L)
Use and situations for equivalent annual worth comparison, Comparison of assets of equal and unequal life, Rate of return, Internal rate of return, comparison of IIR with other methods, IRR misconceptions.

Unit III (6L)
Analysis of public Projects: Benefit/ Cost analysis, quantification of project, cost and benefits, benefit/ cost applications, Cost—effectiveness analysis.

Unit IV (6L)
Depreciation, computing depreciation charges, after tax economic comparison, Break-even analysis; linear and non-linear models. Product and Process Costing, Standard Costing, cost estimation, Relevant Cost for decision making, Cost control and Cost reduction techniques.

Text Book:
1. Horn green, C.T., Cost Accounting, Prentice Hall of India
Write Programs in ‘C’ Language:
1. To deduce error involved in polynomial equation.
2. To Find out the root of the Algebraic and Transcendental equations using
3. To implement Newton’s Forward and Backward Interpolation formula.
4. To implement Gauss Forward and Backward, Bessel’s, Sterling’s and Evertt’s
 Interpolation formula.
5. To implement Newton’s Divided Difference and Langranges Interpolation formula.
6. To implement Numerical Differentiations.
7. To implement Numerical Integration using Trapezoidal, Simpson 1/3 and Simpson 3/8
 rule.
8. To implement Least Square Method for curve fitting.
9. To draw frequency chart like histogram, frequency curve and pie-chart etc.
10. To estimate regression equation from sampled data and evaluate values of standard
deviation, t-statistics, regression coefficient, value of R2 for atleast two independent
variables.

Write Program in C or C++ for following.
1. Program for Stack
2. Program Queue, Circular Queue
3. Program demonstrating Stack operation
4. Program for Stack Using Linked List
5. Program for Queue Using Linked List
6. Traversing of Tree Using Linked List
7. Queue Using Array
8. Program for Tree Structure, Binary Tree, Binary Search Tree
9. Program for Heap Sort
10. Program for Quick Sort
11. Graph Implementation BFS,DFS
12. Deletion in BST
13. Insertion in BST
PEC-350 DIGITAL ELECTRONICS LAB

L T P
0 0 2

1. Bread-board implementation of various flip-flops.
2. Bread-board implementation of counters & shift registers.
3. Determination of Delay time and NAND, NOR, Ex-OR, AND & OR Gates.
5. Experiments with clocked Flip-Flop.
6. Design of Counters.
7. Bread Board implementation of counters & shift registers.
8. Implementation of Arithmetic algorithms.
9. Bread Board implementation of Adder/Subtractor (Half, Full)
10. Transfer characteristics of TTL inverters & TTL Schmitt Trigger inverter.
11. Transfer characteristics of CMOS inverters series and CD40 series and
12. estimation of Gate delay of CD40 series CMOS inverter.
14. Clock circuit realization using 555 and CMOS inverter and quartz crystal.

PCS- 304 : Object Oriented Programming Using Java

L T P
0 0 2

1. To become familiar with classes that represent entities that can interact with the user.
2. To successfully write simple programs that involve if statements.
3. To gain practice in the use of Boolean operators like && and ||.
4. To construct a class that represents a simple ATM (automatic teller machine).
5. Write a new program called Options.java that will request that the user enter an integer and then will display the message .positive,. .negative,. or zero. if the value that was entered was greater than zero, less than zero, or equal to zero, respectively.
6. Write a simple program called RandomGeneration.java that will request N, the number of values desired, and then generate a list of N random double values. Use a ViewFrame for input and output.
7. Write program for Java Applets.
8. Use Java Servlets for proxy server.
TCS-401

COMPUTER ORGANIZATION

L T P
3 1 0

Unit-I

Unit-II
Control Design:
Hardwired & Micro Programmed (Control Unit): Fundamental Concepts (Register Transfers, performing of arithmetic or logical operations, fetching a word from memory, Storing a word in memory), Execution of a complete instruction, Multiple-Bus organization, Hardwired Control, Micro programmed control(Microinstruction, Microprogram sequencing, Wide-Branch addressing, Microinstruction with Next-address field, Prefetching Microinstruction).

Unit-III
Processor Design:
Processor Organization: General register organization, Stack organization, Addressing mode, Instruction format, Data transfer & manipulations, Program Control, Reduced Instruction Set Computer.
Input-Output Organization:
I/O Interface, Modes of transfer, Interrupts & Interrupt handling, Direct Memory access, Input-Output processor, Serial Communication.

Unit-IV
Memory Organization:
Memory Hierarchy, Main Memory (RAM and ROM Chips), organization of Cache Memory, Auxiliary memory, Cache memory, Virtual Memory, Memory management hardware.

Unit – V

Text Book:

Reference Book:
1. Computer Organization, Vravice, Zaky & Hamacher (TMH Publication)
2. Structured Computer Organization, Tannenbaum(PHI)
3. Computer Organization, Stallings(PHI)
Unit-1
Introduction
Introduction to UNIX, UNIX system organization (the kernel and the shell), Unix File System, Basic file attributes, Editors (vi and ed).

Unit-2
General Purpose Utilities: cal, date, echo, script, mailx, passwd, who, uname, tty, sty, cat, cp, rm, mv, more, file, wc, od, cmp, comm, diff, lp, banner, dos2unix, and unix2dos, gzip and gunzip, zip and unzip.

Unit-3
Unix Shell programming: Types of Shells, Shell Metacharacters, Shell variables, Shell scripts, Shell commands, the environment, Integer arithmetic and string Manipulation, Special command line characters, Decision making and Loop control, controlling terminal input, trapping signals, arrays.

Unit-4
Unix System Administration: File System, mounting and unmounting file system, System booting, shutting down, handling user account, backup, recovery, security, creating files, storage of Files, Disk related commands, User quota and accounting.

Textbook:

References
1. Parata, “Advanced Unix programming guide”, BPB
TCS -403
THEORY OF AUTOMATA & FORMAL LANGUAGES

Unit I
Introduction to defining language, Kleene closures, Arithmetic expressions, defining grammar, Chomsky hierarchy, Finite Automata (FA), Transition graph, generalized transition graph.

Unit II
Nondeterministic finite Automata (NFA), Deterministic finite Automata (DFA), Construction of DFA from NFA and optimization, FA with output: Moore machine, Mealy machine and Equivalence, Applications and Limitation of FA.

Unit III
Arden Theorem, Pumping Lemma for regular expressions, Myhill-Nerode theorem, Context free grammar: Ambiguity, Simplification of CFGs, Normal forms for CFGs, Pumping lemma for CFLs, Decidability of CFGs, Ambiguous to Unambiguous CFG.

Unit IV
Push Down Automata (PDA): Description and definition, Working of PDA, Acceptance of a string by PDA, PDA and CFG, Introduction to auxiliary PDA and Two stack PDA.

Unit V
Turing machines (TM): Basic model, definition and representation, Language acceptance by TM, TM and Type – 0 grammar, Halting problem of TM, Modifications in TM, Universal TM, Properties of recursive and recursively enumerable languages, unsolvable decision problem, undecidability of Post correspondence problem, Church’s Thesis, Recursive function theory.

Text Books:

Reference Books:
1. Martin J. C., “Introduction to Languages and Theory of Computations”, TMH
4. Kumar Rajendra, “Theory of Automata (Languages and Computation)”, PPM
Unit- I
Introduction: An overview of database management system, database system Vs file system, Database system concepts and architecture, data models schema and instances, data independence and data base language and interfaces, Data definitions language, DML, Overall Database Structure.

Data Modeling using the Entity Relationship Model:
ER model concepts, notation for ER diagram, mapping constraints, keys, Concepts of Super Key, Candidate key, primary key, Generalization, aggregation, reduction of an ER diagrams to tables, Extended ER model, relationships of higher degree.

Unit- II
Relational data Model and Language: Relational data model concepts, integrity constraints: entity integrity, referential integrity, Keys constraints, Domain constraints, relational algebra, relational calculus, tuple and domain calculus.

Introduction to SQL: Characteristics of SQL. Advantage of SQL. SQL data types and literals. Types of SQL commands. SQL operators and their procedure. Tables, views, Queries and sub queries. Aggregate functions. Insert, update and delete operations. Joins, Unions, Intersection, Minus, Cursors in SQL.

Unit- III
Data Base Design & Normalization:
Functional dependencies, normal forms, first, second, third normal forms, BCNF, inclusion dependences, loss less join decompositions, normalization using FD, MVD, and JDs, alternative approaches to database design.

Unit- IV

Unit- V
Concurrency Control Techniques: Concurrency control, locking Techniques for concurrency control, Time stamping protocols for concurrency control, validation based protocol, multiple granularity, Multi version schemes, Recovery with concurrent transaction.

Text Books:

References:
4 Majumdar & Bhattacharya, “Database Management System”, TMH
TCS-405 MICROPROCESSOR

Unit I
Introduction – Microprocessors Evolution and types (Intel 4004 – Pentium IV and road maps), Overview of 8085, 8086, 80286, 80386, 80486, Pentium processors and Micontrollers.

Unit II
Architecture of 8086 – Register Organization, Execution unit, Bus Interface Unit, Signal Description, Physical Memory Organization, General Bus Operation, I/O addressing capabilities, Minimum mode and maximum mode timing diagrams, Comparison with 8088

Unit III
8086 programming – Assembly language program development tools (editor, linker, loader, locator, Assembler, emulator and Debugger), Addressing modes, Instruction set descriptions,

Unit IV
Assembler directives and operators, Procedures and Macros. (Writing programs for use with an assembler MASM), 8086 Interfacing – Interfacing 8086 with semiconductor memory, 8255, 8254/8243, 8251, 8279.

Unit V
A/D and D/A converters, Numeric processor 8087, I/O processor 8089, Bus Interface (USB, PCI).

Text Books:

References:
Unit-I: Introduction (5L)

Unit-II: Software Requirement Specifications (SRS) (5L)

Unit-III: Software Design (7L)

Unit-IV: Coding, Testing & Software Maintenance (7L)

Text Books:

Reference Books:
PCS- 402 : UNIX & Shell Programming Lab

1. Use Vi editor to create a file called myfile.txt which contain some text. Correct typing errors during creation, Save the file & Logout of the file
2. Open the file created in Exp 1, Add, Change, delete & Save the changes
3. Use the cat command to create a file containing the following data. Call it mutable use tabs to separate the fields 1425 ravi 15.65, 4320 ramu 26.27, 6830 sita 36.15, 1450 raju 21.86
4. Use the cat command to display the file, my table, use vi command to correct any errors in the file, my table, use the sort command to sort the file my table according to the first field. Call the sorted file my table(same name) & print the file my table
5. Use the cut & paste commands to swap fields 2 and 3 my table. Call it mytable(same name) & print the new file, my table
6. Use the date and who commands in sequence ?(in one line) such that the output of date will display on the screen and the output of who will be redirected to a file called my file2.Use the more command to check the contents of myfile2.
7. Develop an interactive grep script that asks for a word and a file name and then tells how many lines contain that word
8. Write A shell script that takes a command –line argument and reports on whether it is directory, a file, or something else
9. Write a shell script that accepts one or more file name as a arguments and converts all of them to uppercase, provided they exits in the current directory
10. Write a shell script that determines the period for which a specified user is working on the system

PCS- 404 : Database Management System Lab

1. Write the queries for Data Definition and Data Manipulation Language.
2. Write SQL queries using logical operations (=,<,>,etc)
3. Write SQL queries using SQL operators
4. Write SQL query using character, number, date and group functions
5. Write SQL queries for relational algebra
6. Write SQL queries for extracting data from more than one table
7. Write SQL queries for sub queries, nested queries
8. Write programme by the use of PL/SQL
9. Concepts for ROLL BACK, COMMIT & CHECK POINTS
10. Create VIEWS, CURSORS and TRGGRERS & write ASSERTIONS.
11. Create FORMS and REPORTS

Note:
1. The queries to be implemented on DBMS using SQL
2. Students are advised to use Developer 2000/Oracle9i or other latest version for above experiments. However student may use Power Builder/SQL SERVER or DB2.
Mini Projects may also be planned & carried out throughout the semester to understand important concepts of database.

PCS-405: Microprocessor Lab

1. To study 8085 microprocessor System
2. To study 8086 microprocessor System
3. To develop and run a programme to find out largest and smallest number
4. To develop and run a programme for converting temperature from F to C degree
5. To develop and run a programme to compute square root of a given number
6. To develop and run a programme for computing ascending/descending order of a number.
7. To perform interfacing of RAM chip to 8085/8086
8. To perform interfacing of keyboard controller
9. To perform interfacing of DMA controller
10. To perform interfacing of UART/USART