UTTERAKHAND TECHNICAL UNIVERSITY, DEHRADUN
REVISED STUDY AND EVALUATION SCHEME
YEAR II, SEMESTER-III
B. Tech. Mechanical Engineering

<table>
<thead>
<tr>
<th>S. No.</th>
<th>Course Code</th>
<th>SUBJECT</th>
<th>L</th>
<th>T</th>
<th>P</th>
<th>SESSIONAL EXAM.</th>
<th>ESE</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>CT</td>
<td>TA</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Total</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>ESE</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Subject Total</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Total</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

THEORY

1. TAS 301 Mathematics –III 3 1 0 30 20 50 100 150
2. TME-301 Materials Science 3 1 0 30 20 50 100 150
3. TME-302 Applied Thermodynamics 3 1 0 30 20 50 100 150
4. TCE-301 Fluid Mechanics 3 1 0 30 20 50 100 150
5. TME-303 Strength of Material 3 1 0 30 20 50 100 150

PRACTICAL/TRAINING/PROJECT

6. PME-351 Material Science & Testing Lab 0 0 3 10 10 20 30 50
7. PME-354 Machine Drawing-I 0 0 2 10 10 20 30 50
8. FCE-351 Fluid Mechanics Lab 0 0 3 10 10 20 30 50
9. PME-352 Applied Thermodynamics Lab 0 0 2 10 10 20 30 50
10. GP-301 General Proficiency - - - - - 50 - 50

Total 15 5 10 - - - - 1000

YEAR II, SEMESTER-IV

<table>
<thead>
<tr>
<th>S. No.</th>
<th>Course Code</th>
<th>SUBJECT</th>
<th>L</th>
<th>T</th>
<th>P</th>
<th>SESSIONAL EXAM.</th>
<th>ESE</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>CT</td>
<td>TA</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Total</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>ESE</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Subject Total</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Total</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

THEORY

1. TME-401 Industrial Engineering 3 1 0 30 20 50 100 150
2. TME-402 Kinematics of Machine 3 1 0 30 20 50 100 150
3. TME-403 Manufacturing Science-I 3 1 0 30 20 50 100 150
4. TEE-405 Electrical Machines 3 1 0 30 20 50 100 150
5. TME-404 Measurement, Metrology and Control 3 1 0 30 20 50 100 150

PRACTICAL/TRAINING/PROJECT

6. PME-453 Manufacturing Science-I Lab 0 0 3 10 10 20 30 50
7. PME-454 Measurement, Metrology and Control Lab 0 0 2 10 10 20 30 50
8. PME-456 Machine Drawing-II 0 0 2 10 10 20 30 50
9. PEE-455 Electrical Machines Lab 0 0 3 10 10 20 30 50
10. GP-401 General Proficiency - - - - - 50 - 50

Total 15 5 10 - - - - 1000

NOTE: Practical summer training-I of 4-weeks after IV –semester will be evaluated in VII semester.
TAS 301

MATHEMATICS-III

L T P
3 1 0

Unit - I : Integral Transforms 8

Fourier integral, Fourier complex transform, Fourier sine and cosine transforms and applications to simple heat transfer equations.

Z – transform and its application to solve difference equations.

Unit - II : Functions of a Complex Variable - I 9

Analytic functions, C-R equations and harmonic functions, Line integral in the complex plane, Cauchy's integral theorem, Cauchy's integral formula for derivatives of analytic functions, Liouville's theorem, Fundamental theorem of algebra.

Unit - III : Functions of a Complex Variable - II 8

Representation of a function by power series, Taylor's and Laurent's series, Singularities, zeroes and poles, Residue theorem, evaluation of real integrals of type \[\int_{0}^{2\pi} f(\cos \theta, \sin \theta) \, d\theta \] and \[\int_{-\infty}^{+\infty} f(x) \, dx \], Conformal mapping and bilinear transformations.

Unit - IV : Statistics and Probability 8

Moments, Moment generating functions, Skewness, Kurtosis, Correlation and Regression, Binomial distribution, Poisson distribution, Normal distribution.

Unit - V : Curve Fitting and Solution of Equations 5

Method of least squares and curve fitting of straight line and parabola, Solution of cubic and bi-quadartic equations.
MATERIAL SCIENCE

Unit-I

Unit-II

Mechanical properties and Testing: Stress strain diagram, Ductile & brittle material, Stress VS strength. Toughness, Hardness, Fracture, Fatigue and Creep. Testings such as Strength testings, Hardness testing, Impact testings, Fatigue testing Creep testing, Non-destructive testing (NDT)

Microstructural Exam: Microscope principle and methods. Preparation of samples and Microstructure exam and grain size determination. Comparative study of microstructure of various metals & alloys such as Mild steel, CI, Brass.

Unit-III

Ferrous materials: Iron and steel manufacture, furnaces. Various types of carbon steels, alloy steels and cast irons, its properties and uses.

Heat Treatment: Various types of heat treatment such as Annealing, Normalizing, Quenching, Tempering and Case hardening. Time Temperature Transformation (TTT) diagrams.

Non-Ferrous metals and alloys: Non-ferrous metals such as Cu, Al, Zn, Cr, Ni etc. and its applications. Various type Brass, Bronze, bearing materials, its properties and uses. Aluminum alloys such as Duralumin. Other advanced materials/alloys.

Unit-IV

Magnetic properties: Concept of magnetism - Dia, para, ferro Hysteresis. Soft and hard magnetic materials, Magnetic storages.

Super conductivity and its applications. Messier effect. Type I & II superconductors. High Te superconductors.

Unit-V

Ceramics: Structure types and properties and applications of ceramics. Mechanical behaviour and processing of Ceramics.

Other materials: Brief description of other material such as optical and thermal materials concrete, Composite Materials and its uses.

Performance of materials in service: Brief theoretical consideration of Fracture, Fatigue, and Corrosion and its control.

References:
3. V. Raghvan - Material Science, Pretice Hall of India
4. Narula - Material Science, TMH
APPLIED THERMODYNAMICS

Unit-I

Unit-II

Unit-III

Steam Engines: Rankine and modified Rankine cycles, working of stream engine Indicator diagram.

Steam & Gas Nozzles: Flow through nozzle, variation of velocity, area and sp. Volume, nozzle efficiency, Throat area. Super saturated flow.

Unit-IV

Vapour Power cycles: Effect of Pressure & temp. on Rankine cycle Reheat cycle, Regenerative cycle, feed water heaters.

Steam Turbines: Classification, impulse and reaction turbines, Staging, Stage and overall efficiency, re-heat factor, bleeding, comparison with steam engines. Governing of turbines. Velocity diagram of simple & compound multistage impulse & reaction turbines & related calculations work done efficiencies of reaction, impulse Reaction Turbines, state point locus, Reheat factor.

Unit-V

Introduction to the principles of jet propulsion, Turbojet & turboprop engines & their processes, Introduction to Rocket Engine.

References:
2. Thermal Engg. By P.L. Blallaney, Khanna Publisher
3. Theory of Stream Turbine by W.J. Kearton
4. Steam & Gas Turbine by R.Yadav, CPH Allahabad
6. Turbine Compressors & Fans by S.M. Yahya, TMH
9. Engg. Thermodynamics by Nag
UNIT I:

Introduction: Fluids and continuum; Physical properties of fluids: Viscosity, Compressibility, Surface Tension, Capillarity, Vapour Pressure; Cavitation; Classification of fluids including rheological classification. [03]

Fluid Statics: Pascal’s law; Pressure-density-height relationship; Measurement of pressure by Manometers and mechanical gauges; Pressure on plane and curved surfaces; The Hydrostatic law; Total Pressure and Centre of pressure; Buoyancy; Stability of immersed and floating bodies; Fluid masses subjected to uniform horizontal and vertical accelerations. [03]

Dimensional Analysis: Units and Dimensions, Dimensional analysis, Rayleigh’s method, Buckingham’s ? theorem, Important dimensionless numbers used in fluid mechanics and their significance. [02]

UNIT II:

Hydraulic Similitude and Model Studies: Model and prototype; Similitude; Geometric, Kinematic and Dynamic similarity; Model Laws; Undistorted model studies. [01]

Fluid Kinematics: Description of Fluid flow: Lagrangian and Eulerian approach; Types of fluid Flows: Steady and unsteady, Uniform and non-uniform, Laminar and turbulent flows, 1, 2 and 3-D flows; Stream lines, Path lines and Streak lines; Stream tube; Acceleration of a fluid particle along a straight and curved path; Differential and Integral form of Continuity equation; Rotation, Vorticity and Circulation; Elementary explanation of Stream function and Velocity potential; Flow net characteristics, uses and experimental and graphical methods of drawing. [03]

Fluid Dynamics-I: Concept of control volume and control surface, Reynolds Transport Theorem, Introduction to Navier-Stokes Equations, Euler’s equation of motion along a streamline and its integration, Bernoulli’s equation and its applications – Pitot tube, Flow through orifices, Mouthpieces, Nozzles, Notches, Weirs, Sluice gates under free and submerged flow conditions; Free and Forced vortex motion. [04]

UNIT III:

Fluid Dynamics-II: Impulse-Momentum Principle; Moment of momentum equation; Momentum equation application to stationary and moving vanes, pipe bends, Problems related to, combined application of energy and momentum equations, flow measurements, determination of coefficients of discharge, velocity and contraction and energy loss. [02]

Laminar Flow: Reynolds Experiment; Equation of motion for laminar flow through pipes; Flow between parallel plates; Kinetic energy and Momentum correction factors; Stokes law; Flow through porous media; Darcy’s Law; Fluidization; Measurement of viscosity; Transition from laminar to turbulent flow. [03]
Turbulent Flow: Turbulence; Equation for turbulent flow; Reynolds stresses; Eddy viscosity; Mixing length concept and velocity distribution in turbulent flow; Working principle of Hot-wire anemometer and Laser Doppler anemometer (LDA). [03]

UNIT IV:

Boundary Layer Analysis: Boundary layer thicknesses; Boundary layer over a flat plate; Laminar boundary layer; Application of Von-Karman Integral Momentum Equation; Turbulent boundary layer; Laminar sub-layer; Hydro-dynamically Smooth and rough boundaries; Local and average friction coefficient; Total drag; Boundary layer separation and its control. [03]

Flow Through Pipes: Nature of turbulent flow in pipes; Equation for velocity distribution over smooth and rough surfaces; Major and Minor energy losses; Resistance coefficient and its variation; Hydraulic gradient and total energy lines; Flow in sudden expansion, contraction, diffusers, bends, valves and siphons; Concept of equivalent length; Branched pipes; Pipes in series and parallel; Simple pipe networks. [05]

Unit V:

Compressibility Effects in Pipe Flow: Transmission of pressure waves in rigid and elastic pipes; Water hammer; Analysis of simple surge tank excluding friction. [03]

Ideal (Potential) Fluid Flow: Importance; Elementary concept of the uniform flow, the source flow, the sink flow and the free vortex flow. [02]

Flow Past Submerged Bodies: Drag and lift, Types of drag force, Drag on sphere, Cylinder and airfoil; Circulation and Lift on a cylinder and airfoil; Magnus effect. [03]

REFERENCES:

1. R J Fox: Introduction to Fluid Mechanics
5. K L Kumar: Engineering Fluid Mechanics
8. Som and Biswas: Introduction to Fluid Mechanics and Machines, TMH.
9. R K Bansal: Fluid Mechanics and Hydraulic Machines
10. Modi and Seth: Fluid Mechanics and Fluid Machines
TME-303

STRENGTH OF MATERIALS

UNIT-I

Review: Review of simple and compound stresses, Mohr’s Circle.
Theories of Failure. Castigliano’s Theorem. Impact load & stresses.
Airy’s Stress Function: Airy’s stress function and its applications

UNIT –II

• Tresses in Beams: Review of pure Bending. Direct and shear stresses in beams due to transverse and axial loads, composite beams.
• Deflection of Beams: Equation of elastic curve, cantilever and simply supported beams, Macaulay’s method, area moment method, fixed and continuous beams.
• Torsion: Review of Torsion, combined bending & torsion of solid & hollow shafts.

UNIT-III

• Helical and Leaf Springs: deflection of springs by energy method, helical springs under axial load and under axial twist (respectively for circular and square cross sections) axial load and twisting moment acting simultaneously both for open and closed coiled springs, laminated springs.
• Columns and Struts: Combined bending and direct stress, middle third and middle quarter rules. Struts with different end conditions. Euler’s theory and experimental results, Ranking Gardon Formulae, Examples of columns in mechanical equipments and machines.

UNIT-IV

• Thin cylinders & spheres: Hoop and axial stresses and strain. Volumetric strain.
• Thick cylinders: Radial, axial and circumferential stresses in thick cylinders subjected to internal or external pressures, Compound cylinders. Stress due to interference fits.

UNIT-V

• Curved Beams: Bending of beams with large initial curvature, position of neutral axis for rectangular, trapezoidal and circular cross sections, stress in crane hooks, stress in circular rings subjected to tension or compression.
Unsymmetrical Bending: Properties of beam cross-section, slope of neutral axis, stress and deflection in unsymmetrical bending, determination of shear center and flexural axis (for symmetry about both axes and about one axis) for I-section and channel-section.

Books:
1. Strength of Materials by Ryder
2. Strength of Materials by Singer
3. Strength of Materials by Timoshenko and Timoshenko & Ys ung
5. Mechanics of Materials by Bear Jhonson
7. Strength of Materials by Ramamrutham & Narain
8. Advanced Mechanics of Solids by Kazami, TMH
A. **Material Science Lab Experiments** : (at least 5 of the following)
 1. Making a plastic mould for small metallic specimen.
 2. Specimen preparation for micro structural examination-cutting, grinding, polishing, etching.
 3. Grain Size determination of a given specimen.
 4. Comparative study of microstructures of different given specimens (mild steel, gray C.I., brass, cooper etc.)
 5. Heat treatment experiments such as annealing, normalizing, quenching, case hardening and comparison of hardness before and after.
 6. Material identification of say 50 common items kept in a box.
 7. Faraday’s law of electrolysis experiment.
 8. Study of corrosion and its effects.

B. **Material Testing Lab Experiments** : (at least 5 of the following)
 1. Strength testing of a given mild steel specimen on UTM with full details and s-e plot on the machine.
 2. Other tests such as shear, bend tests on UTM.
 3. Impact testing on impact testing machine like Charpy, Izod or both.
 5. Spring index testing on spring testing machine.
 6. Fatigue testing on fatigue testing machine.
 7. Creep testing on creep testing machine.
 8. Deflection of beam experiment, comparison of actual measurement of deflection with dial gauge to the calculated one, and or evaluation of young’s modulus of beam.
 9. Torsion testing of a rod on torsion testing machine.
 10. Study of non-destructive testing methods like magnetic flaw detector, ultrasonic flaw detector, eddy current testing machine, dye penetrant tests.

7. Assembly drawing: Introduction, Engine parts, Stuffing box etc.

References:
1. N. Siddeshwar, P.Kannaiah, V.V.S. Shastry: Machine drawing, TMH, New Delhi.

3. Engineering drawing practice for schools and colleges, SP46-1998 (BIS)
FLUID MECHANICS LAB

1. To measure the surface tension of a liquid.
2. To determine the metacentric height of a ship model experimentally.
3. To study the transition from laminar to turbulent flow and to determine the lower critical Reynolds number.
4. To determine the coefficients of velocity, contraction and discharge of an orifice (or a mouth piece) of a given shape. To plot the flow net for a given model using the concept of electrical analogy.
5. To find the velocity distribution in a pipe and hence to compute the discharge by integrating the velocity profile obtained.
6. To verify the Bernoulli’s theorem.
7. To calibrate an orifice meter and venturimeter and to study the variation of the coefficient of discharge with the Reynolds number.
8. To calibrate and to determine the coefficient of discharge for rectangular and triangular notches.
9. To verify Darcy’s law and to find out the coefficient of permeability of the given medium.
10. To verify the momentum equation.
11. To study the boundary layer velocity profile and to determine boundary layer thickness and displacement thickness. Also to determine the exponent in the power law of velocity distribution.
12. To study the variation of friction factor, ‘f’ for turbulent flow in smooth and rough commercial pipes.
13. To determine the loss coefficients for the various pipe fittings.
14. To study the flow behaviour in a pipe bend and to calibrate the pipe bend for discharge measurement.
Experiments: Say minimum 10 experiments out of following in depth and details according to theory covered in applied thermodynamics theory subject (ME-302)

1. Study of Fire Tube boiler
2. Study of water Tube boiler
3. Study & working of Refrigerator
4. Study of velocity compounded steam turbine
5. Study of pressure compounded steam turbine
6. Study of impulse & Reaction turbine
7. Study of steam Engine model.
8. Study and working of two stroke petrol Engine
9. Study and working of Four stroke petrol Engine
10. Determination of Indicated H.P. of I.C. Engine by Morse Test
11. Study of Gas Turbine Model
12. Study & working of Air conditioner
13. Prepare the energy balance for Diesel/Petrol Engine
14. Study & working of two stroke Diesel Engine
15. Study & working of four shope Diesel Engine.
17. Study of Breaking system of any vehicle.
TME – 401

INDUSTRIAL ENGINEERING

Unit-I
1. Productivity: Introduction, definition, measurement, productivity index, ways to improve productivity, Types of Production System.
2. Work study: Meaning and benefits of work study, time & motion study. Micromotion study P.M.T.S. man machine Diagram flow chart. Motion economy, Method study, work measurement, work sampling, standard time.

Unit-II
3. Plant layout and materials Handling: Plant location, type of layout, principles of facility layout principles of material handling, Material Handling eqpts.
4. Production planning and control: Objectives, Forecasting, product design and development functions, steps in PPC. Planning routine, scheduling, Dispatching & follow-up, Effectiveness of PPC, Introduction of JIT.

Unit-III
6. Replacement Analysis: Depreciation causes, obsolescence, service life of assets, Replacement of items.
7. Maintenance Management: Maintenance Planning & Control, Maintenance Strategy

Unit-IV
8. Inventory Control: Inventory, function, cost, deterministic models, Introduction to MRP, supply chain Management

Unit-V
10. Industrial Ownership: Proprietorship, partnership, Joint stock & co-operative stores.

References:
5. Industrial Engineering by Ravi Shanker.
6. Industrial Engineering by Mahajan.
UNIT I
Introduction
Links-types, Kinematics pairs-classification, Constraints-types, Degree of Freedom, Grubler’s equation, linkage mechanisms, inversions of four bar linkage, slider crank chain and double slider crank chain

Velocity in Mechanisms
Velocity of point in mechanism, relative velocity method, instantaneous point in mechanism, Kennedy’s theorem, instantaneous center method.

UNIT II
Acceleration in Mechanisms
Acceleration diagram, Coriolis component of acceleration, Klein’s construction for Slider Crank and Four Bar mechanism, Analytic method for slider crank mechanism.

Mechanisms with Lower Pairs
Pantograph, Exact straight line motion mechanisms - Peaucellier’s, Hart and Scott Russell mechanisms, Approximate straight line motion mechanisms – Grass-Hopper, Watt and Tchebicheff mechanisms, Analysis of Hook’s joint, Davis and Ackermann Steering gears.

UNIT III
Kinematics Synthesis of Planar Linkages
Movability of four bar linkages, Grashoff’s law, Graphical methods of synthesis – Two and Three position synthesis of four bar and slider crank mechanisms, Analytical method-Freudenstein’s equation for function generation (three position)

UNIT IV
CAMS
Cams and Followers - Classification & terminology, Cam profile by graphical methods for uniform velocity, simple harmonic motion and parabolic motion of followers, Analytical cam design – tangent and circular cams.

UNIT V
Gears
Classification & terminology, law of gearing, tooth forms, interference, under cutting, minimum number of teeth on gear and pinion to avoid interference, simple, compound and planetary gear trains.

Books and References:
1. Theory of machines - Thomas Bevan
2. Theory of machines and mechanisms- Shigley
3. Theory of machines and mechanisms-Ghosh & Mallik
4. Theory of machines and mechanisms- Rao & Dukkipati
5. Theory of Machines – R. K. Bansal
6. Theory of Machines – V. P. Singh
7. Theory of Machines – Malhotra & Gupta
8. Theory of Machines – Khurmi & Gupta
Unit-I

Introduction:

Metal Forming Processes:
Elastic & plastic deformation, yield criteria. Hot working vs cold working. Load required to accomplish metal forming operation.
Analysis (equilibrium equation method) of forging process with sliding friction sticking friction and mixed condition for slab and disc. Work required for forging, Hand, Power, Drop Forging

Unit-II

Metal Forming Processes (continued):
Analysis of Wire/strip drawing and max. reduction, Tube drawing, Extrusion and its application.
Condition for Rolling force and power in rolling. Rolling mills.
Design, lubrication and defects in metal forming processes.

Unit-III

Sheet Metal working:
Analysis of forming process like cup/deep drawing and bending.

Unit-IV

Unconventional Metal forming processes:
Unconventional metal forming processes such as explosive forming, electromagnetic, electro-hydraulic forming.

Powder Metallurgy:
Powder metallurgy manufacturing process. The process, advantage and applications.

Jigs & Fixtures:

Manufacturing of Plastic components:
Unit-V

Casting (Foundry)

Die Casting centrifugal casting. Investment casting etc.

Books:

1. Manufacturing Science by Ghosh and Mallik
3. Production Technology by R.K. Jain
5. Materials and Manufacturing by Paul Degarmo.
TEE – 405

ELECTRICAL MACHINES

L T P
3 1 0

Unit – I :
Transformers: Construction, polarity test, Sumpner’s test, all day efficiency
Autotransformer: Volt-amp relation, efficiency, advantages & disadvantages and applications; Three-phase transformers: Connections, three-phase bank of single phase transformers, Scott connections; Instrument Transformers. (8)

Unit – II :
D.C. Machines:
D.C.machine: Construction, emf and torque equations. Armature reaction, commutation, performance characteristics of motors and generators, starting of motors, speed control losses and efficiency. (8)

Unit – III :
Three-Phase Induction Motor:
Construction, rotating magnetic field and principle of operation, of equivalent circuit, torque production, Torque-slip characteristics, speed control, starting of squirrel cage and slip ring induction motors. (7)

Unit – IV:
Three-phase Synchronous Machines :
Alternator: Construction, emf equation & effects of pitch and distribution factors phasor diagram, armature reaction, Voltage regulation and its determination by synchronous impedance method, methods of synchronization
Synchronous motor: Principle of operation and starting torque and mechanical power developed, effect of excitation on line current, (v – curves) (8)

Unit – V :
1. Fractional H.P. Motors:
2. Industrial Applications :
Concept of braking in dc and ac motors, two quadrant and four quadrant operation of dc and three phase induction motors, industrial applications of dc and ac motors.(9)

REFERENCES :
2 Electric Machines by Ashfaq Husain , Dhanpat Rai & Com. , 2005
3 Generalised Theory of Electrical Machines by Dr. P S Bimbhra , 1996
4 Irvin L.Kosow,”Electric Machinery and Transformers” Prentice Hall of India.
5 P.S. Bimbhra,”Electric Machinery” Khanna Publishers.
MEASUREMENT, METROLOGY AND CONTROL

Unit-I

I. Mechanical Measurements

Introduction: Introduction to measurement and measuring instruments, Generalised measuring system and functional elements, units of measurement, static and dynamic performance characteristics of measurement devices, calibration, concept of error, sources of error, statistical analysis of errors.

Sensors and Transducers:
Types of sensors, types of transducers and their characteristics.

Signal transmission and processing:
Devices and systems.
Signal Display & Recording Devices

Unit-II

Time related measurements:
Counters, stroboscope, frequency measurement by direct comparison.
Measurement of displacement

Measurement of pressure:
Gravitational, directing acting, elastic and indirect type pressure transducers. Measurement of very low pressures.

Strain measurement:
Types of strain gauges and their working, strain gauge circuits, temperature compensation. Strain rosettes, calibration.

Measurements of force and torque:
Different types of load cells, elastic transducers, pneumalic & hydraulic systems.

Temperature measurement:
By thermometers, bimetallic, thermocouples, thermistors and pyrometers.

Vibration:
Seismic instruments, vibration pick ups and decibel meters, vibrometers accelerometers.

Unit-III:

METROLOGY

II. Metrology and Inspection:
Standards of linear measurement, line and end standards. Limit, fits and tolerances. Interchangeability and standardisation.
Linear and angular measurements devices and systems Comparators: Sigma, Johansson’s Microkrator.
Limit gauges classification, Taylor’s Principle of Gauge Design.
Unit-IV

Measurement of geometric forms like straightness, flatness, roundness. 2
Tool makers microscope, profile project autocollimator. 1
Interferometry: principle and use of interferometry, optical flat. 2
Measurement of screw threads and gears. 2
Surface texture: quantitative evaluation of surface roughness and its measurement. 1

Unit-V

Controls

Introduction: Concept of Automatic Controls – open loop & closed loop systems. Servomechanisms. Block diagrams, transfer functions. Applications of Laplace-Transform in control systems with simple examples/numericals. 5

Representation of control components & Systems: Translation & rotational mechanical components, series & parallel combinations, cascade system, analogous system. 2

Controllers: Brief introduction to Pneumatic, hydraulic and electric controllers 1

References
PME-453

MANUFACTURING SCIENCE-1 LAB

Experiments:

Say minimum 8 experiments out of following (or such experiment).

1. Design of pattern for a desired casting (containing hole)
2. Pattern making
3. Making a mould (with core) and casting.
4. Sand testings (at least one such as grain fineness number determination)
5. Injection moulding with plastics
6. Forging hand forging processes
7. Forging - power hammer study & operation
8. Tube bending with the use of sand and on tube bending m/c.
9. Press work experiment such as blanking/pievcing, washer, making etc.
10. Wire drawing/extrusion on soft material.
11. Rolling-experiment.
13. Powder metallurgy experiment.
PME 454

MEASUREMENT, METROLOGY AND CONTROL LAB

Experiments:

Say minimum 8 out of following (or such experiments)

1. Study & working of simple measuring instruments. Like vernier calipers, micrometer, tachometer etc.
4. Study of limit gauges.
5. Study & angular measurement using level protector
6. Adjustment of spark plug gap using feeler gauges.
7. Study of dial indicator & its constructional details.
8. Use of dial indicator to check a shape run use.
9. Study and understanding of limits, fits & tolerances
10. Pressure measuring experiment
11. Temperature measurement experiment
12. Strain gauge measurement
13. Speed measurement using stroboscope
14. Flow measurement experiment
15. Vibration/work measuring experiment.
16. & 17. Experiments on 'Controls'
MACHINE DRAWING –II LAB

Review (1 class)
 Orthographic projection, missing lines, interpretation of views and sectioning.

Part and Assembly drawing (2 classes)
 Introduction, assemblies drawing of stuffing box, steam engine cross head, air valve, late tailstock, gate valve, screw jack, connecting rods, spark plug, tool post, safety valves etc. Drawing exercises.

Specification of Materials : (1 class)
 Engineering materials, code designation of steels, copper and aluminum and its alloys.

Limits, Tolerance and fits : (1 class)
 Introduction, Limit systems, tolerance, fits, Drawings and exercises

Surface Roughness : (1 class)
 Introduction, surface roughness, machining symbols, indication of surface roughness, drawing exercises

Production Drawing : (2 classes)
 Introduction to developing and reading of production drawing of simple machine elements like helical gear, bevel gear, flange, pinion shaft, connecting rod, crankshaft, belt pulley, piston details etc. Idea about tool drawing.

Computer Aided Drafting : (3 classes)
 Introduction, input, output devices, introduction to drafting software like Auto CAD, basic commands and development of simple 2D and 3D drawings.

References :
2. Production drawing by Narayana, et. all, New Age
3. Auto CAD 14 for Engineering Drawing by P. Nageswara Rao, TMH.
Note: Minimum nine experiments are to be performed from the following list.

1. To obtain magnetization characteristics of a dc shunt generator
2. To obtain load characteristics of a dc shunt generator
3. To obtain load characteristics of a dc series generator
4. To obtain load characteristics of a dc compound generator (a) cumulatively compounded (b) differentially compounded
5. To obtain speed – torque characteristics of a dc shunt motor
6. To obtain efficiency & voltage regulation of a single phase transformer by Sumpner’s (back to back) test
7. To perform no load test & block rotor test on a three phase induction motor and determine parameters of equivalent circuit and efficiency
8. To perform no load test and blocked rotor test on a single phase induction motor and determine efficiency
9. To obtain variation of stator current with excitation current (V/curve) of a three phase synchronous motor at no load, ½ load and full load.
10. To perform open circuit and short circuit tests on a three phase alternator and determine voltage regulation by synchronous impedance method at a power factor of unity 0.8 lagging & 0.8 leading
11. To study operation of a 2-phase ac servomotor and a stepper motor
12. To study parallel operation of three phase alternators