Uttarakhand Technical University, Dehradun

Syllabus

For

PHARM. D.
&
PHARM. D. (Post Baccalaureate)

(Doctor of Pharmacy)
First Year Pharm D:

<table>
<thead>
<tr>
<th>S.No.</th>
<th>Name of Subject</th>
<th>No. of hours of Theory</th>
<th>No. of hours of Practical</th>
<th>No. of hours of Tutorial</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.1</td>
<td>Human Anatomy and Physiology</td>
<td>3</td>
<td>3</td>
<td>1</td>
</tr>
<tr>
<td>1.2</td>
<td>Pharmaceutics</td>
<td>2</td>
<td>3</td>
<td>1</td>
</tr>
<tr>
<td>1.3</td>
<td>Medicinal Biochemistry</td>
<td>3</td>
<td>3</td>
<td>1</td>
</tr>
<tr>
<td>1.4</td>
<td>Pharmaceutical Organic Chemistry</td>
<td>3</td>
<td>3</td>
<td>1</td>
</tr>
<tr>
<td>1.5</td>
<td>Pharmaceutical Inorganic Chemistry</td>
<td>2</td>
<td>3</td>
<td>1</td>
</tr>
<tr>
<td>1.6</td>
<td>Remedial Mathematics/ Biology</td>
<td>3</td>
<td>3*</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>Total hours</td>
<td>16</td>
<td>18</td>
<td>6 = (40)</td>
</tr>
</tbody>
</table>

* For Biology

First Year examination:

<table>
<thead>
<tr>
<th>S.No.</th>
<th>Name of Subject</th>
<th>Maximum marks for Theory</th>
<th>Maximum marks for Practicals</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Examination</td>
<td>Sessional</td>
<td>Total</td>
</tr>
<tr>
<td>1.1</td>
<td>Human Anatomy and Physiology</td>
<td>70</td>
<td>30</td>
</tr>
<tr>
<td>1.2</td>
<td>Pharmaceutics</td>
<td>70</td>
<td>30</td>
</tr>
<tr>
<td>1.3</td>
<td>Medicinal Biochemistry</td>
<td>70</td>
<td>30</td>
</tr>
<tr>
<td>1.4</td>
<td>Pharmaceutical Organic Chemistry</td>
<td>70</td>
<td>30</td>
</tr>
<tr>
<td>1.5</td>
<td>Pharmaceutical Inorganic Chemistry</td>
<td>70</td>
<td>30</td>
</tr>
<tr>
<td>1.6</td>
<td>Remedial Mathematics/ Biology</td>
<td>70</td>
<td>30</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

* for Biology
Second Year Pharm D:

<table>
<thead>
<tr>
<th>S.No</th>
<th>Name of Subject</th>
<th>No. of hours of Theory</th>
<th>No. of hours of Practical</th>
<th>No. of hours of Tutorial</th>
</tr>
</thead>
<tbody>
<tr>
<td>(1)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2.1</td>
<td>Pathophysiology</td>
<td>3</td>
<td>-</td>
<td>1</td>
</tr>
<tr>
<td>2.2</td>
<td>Pharmaceutical Microbiology</td>
<td>3</td>
<td>3</td>
<td>1</td>
</tr>
<tr>
<td>2.3</td>
<td>Pharmacognosy & Phytopharmaceuticals</td>
<td>3</td>
<td>3</td>
<td>1</td>
</tr>
<tr>
<td>2.4</td>
<td>Pharmacology-I</td>
<td>3</td>
<td>-</td>
<td>1</td>
</tr>
<tr>
<td>2.5</td>
<td>Community Pharmacy</td>
<td>2</td>
<td>-</td>
<td>1</td>
</tr>
<tr>
<td>2.6</td>
<td>Pharmacotherapeutics-I</td>
<td>3</td>
<td>3</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>Total Hours</td>
<td>17</td>
<td>9</td>
<td>6 = 32</td>
</tr>
</tbody>
</table>

Second Year examination:

<table>
<thead>
<tr>
<th>S.No.</th>
<th>Name of Subject</th>
<th>Maximum marks for Theory</th>
<th>Maximum marks for Practicals</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Examination</td>
<td>Sessional</td>
</tr>
<tr>
<td>2.1</td>
<td>Pathophysiology</td>
<td>70</td>
<td>30</td>
</tr>
<tr>
<td>2.2</td>
<td>Pharmaceutical Microbiology</td>
<td>70</td>
<td>30</td>
</tr>
<tr>
<td>2.3</td>
<td>Pharmacognosy & Phytopharmaceuticals</td>
<td>70</td>
<td>30</td>
</tr>
<tr>
<td>2.4</td>
<td>Pharmacology-I</td>
<td>70</td>
<td>30</td>
</tr>
<tr>
<td>2.5</td>
<td>Community Pharmacy</td>
<td>70</td>
<td>30</td>
</tr>
<tr>
<td>2.6</td>
<td>Pharmacotherapeutics-I</td>
<td>70</td>
<td>30</td>
</tr>
<tr>
<td></td>
<td></td>
<td>600</td>
<td></td>
</tr>
</tbody>
</table>
Third Year Pharm D:

<table>
<thead>
<tr>
<th>S.No.</th>
<th>Name of Subject</th>
<th>No. of hours of Theory</th>
<th>No. of hours of Practical</th>
<th>No. of hours of Tutorial</th>
</tr>
</thead>
<tbody>
<tr>
<td>(1)</td>
<td></td>
<td>(2)</td>
<td>(3)</td>
<td>(4)</td>
</tr>
<tr>
<td>3.1</td>
<td>Pharmacology-II</td>
<td>3</td>
<td>3</td>
<td>1</td>
</tr>
<tr>
<td>3.2</td>
<td>Pharmaceutical Analysis</td>
<td>3</td>
<td>3</td>
<td>1</td>
</tr>
<tr>
<td>3.3</td>
<td>Pharmacotherapeutics-II</td>
<td>3</td>
<td>3</td>
<td>1</td>
</tr>
<tr>
<td>3.4</td>
<td>Pharmaceutical Jurisprudence</td>
<td>2</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>3.5</td>
<td>Medicinal Chemistry</td>
<td>3</td>
<td>3</td>
<td>1</td>
</tr>
<tr>
<td>3.6</td>
<td>Pharmaceutical Formulations</td>
<td>2</td>
<td>3</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>Total hours</td>
<td>16</td>
<td>15</td>
<td>5 = 36</td>
</tr>
</tbody>
</table>

Third Year examination:

<table>
<thead>
<tr>
<th>S.No.</th>
<th>Name of Subject</th>
<th>Maximum marks for Theory</th>
<th>Maximum marks for Practicals</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Examination</td>
<td>Sessional</td>
<td>Total</td>
</tr>
<tr>
<td>3.1</td>
<td>Pharmacology-II</td>
<td>70</td>
<td>30</td>
</tr>
<tr>
<td>3.2</td>
<td>Pharmaceutical Analysis</td>
<td>70</td>
<td>30</td>
</tr>
<tr>
<td>3.3</td>
<td>Pharmacotherapeutics-II</td>
<td>70</td>
<td>30</td>
</tr>
<tr>
<td>3.4</td>
<td>Pharmaceutical Jurisprudence</td>
<td>70</td>
<td>30</td>
</tr>
<tr>
<td>3.5</td>
<td>Medicinal Chemistry</td>
<td>70</td>
<td>30</td>
</tr>
<tr>
<td>3.6</td>
<td>Pharmaceutical Formulations</td>
<td>70</td>
<td>30</td>
</tr>
<tr>
<td></td>
<td></td>
<td>600</td>
<td></td>
</tr>
</tbody>
</table>
Fourth Year Pharm D:

<table>
<thead>
<tr>
<th>S.No.</th>
<th>Name of Subject</th>
<th>No. of hours of Theory</th>
<th>No. of hours of Practical/Hospital Posting</th>
<th>No. of hours of Tutorial</th>
</tr>
</thead>
<tbody>
<tr>
<td>(1)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4.1</td>
<td>Pharmacotherapeutics-III</td>
<td>3</td>
<td>3</td>
<td>1</td>
</tr>
<tr>
<td>4.2</td>
<td>Hospital Pharmacy</td>
<td>2</td>
<td>3</td>
<td>1</td>
</tr>
<tr>
<td>4.3</td>
<td>Clinical Pharmacy</td>
<td>3</td>
<td>3</td>
<td>1</td>
</tr>
<tr>
<td>4.4</td>
<td>Biostatistics & Research Methodology</td>
<td>2</td>
<td>-</td>
<td>1</td>
</tr>
<tr>
<td>4.5</td>
<td>Biopharmaceutics & Pharmacokinetics</td>
<td>3</td>
<td>3</td>
<td>1</td>
</tr>
<tr>
<td>4.6</td>
<td>Clinical Toxicology</td>
<td>2</td>
<td>-</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>Total hours</td>
<td>15</td>
<td>12</td>
<td>6 = 33</td>
</tr>
</tbody>
</table>

Fourth Year examination:

<table>
<thead>
<tr>
<th>S.No.</th>
<th>Name of Subject</th>
<th>Maximum marks for Theory</th>
<th>Maximum marks for Practicals</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Examination</td>
<td>Sessional</td>
</tr>
<tr>
<td>4.1</td>
<td>Pharmacotherapeutics-III</td>
<td>70</td>
<td>30</td>
</tr>
<tr>
<td>4.2</td>
<td>Hospital Pharmacy</td>
<td>70</td>
<td>30</td>
</tr>
<tr>
<td>4.3</td>
<td>Clinical Pharmacy</td>
<td>70</td>
<td>30</td>
</tr>
<tr>
<td>4.4</td>
<td>Biostatistics & Research Methodology</td>
<td>70</td>
<td>30</td>
</tr>
<tr>
<td>4.5</td>
<td>Biopharmaceutics & Pharmacokinetics</td>
<td>70</td>
<td>30</td>
</tr>
<tr>
<td>4.6</td>
<td>Clinical Toxicology</td>
<td>70</td>
<td>30</td>
</tr>
<tr>
<td></td>
<td></td>
<td>600</td>
<td></td>
</tr>
</tbody>
</table>
Fifth Year Pharm D:

<table>
<thead>
<tr>
<th>S.No.</th>
<th>Name of Subject</th>
<th>No. of hours of Theory</th>
<th>No. of hours of Hospital posting*</th>
<th>No. of hours of Seminar</th>
</tr>
</thead>
<tbody>
<tr>
<td>(1)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5.1</td>
<td>Clinical Research</td>
<td>3</td>
<td>-</td>
<td>1</td>
</tr>
<tr>
<td>5.2</td>
<td>Pharmacoepidemiology and Pharmacoeconomics</td>
<td>3</td>
<td>-</td>
<td>1</td>
</tr>
<tr>
<td>5.3</td>
<td>Clinical Pharmacokinetics & Pharmacotherapeutic Drug Monitoring</td>
<td>2</td>
<td>-</td>
<td>1</td>
</tr>
<tr>
<td>5.4</td>
<td>Clerkship *</td>
<td>-</td>
<td>-</td>
<td>1</td>
</tr>
<tr>
<td>5.5</td>
<td>Project work (Six Months)</td>
<td>-</td>
<td>20</td>
<td>-</td>
</tr>
<tr>
<td>Total hours</td>
<td></td>
<td>8</td>
<td>20</td>
<td>4 = 32</td>
</tr>
</tbody>
</table>

* Attending ward rounds on daily basis.

Fifth Year examination:

<table>
<thead>
<tr>
<th>S.No.</th>
<th>Name of Subject</th>
<th>Maximum marks for Theory</th>
<th>Maximum marks for Practicals</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Examination</td>
<td>Sessional</td>
</tr>
<tr>
<td>5.1</td>
<td>Clinical Research</td>
<td>70</td>
<td>30</td>
</tr>
<tr>
<td>5.2</td>
<td>Pharmacoepidemiology and Pharmacoeconomics</td>
<td>70</td>
<td>30</td>
</tr>
<tr>
<td>5.3</td>
<td>Clinical Pharmacokinetics & Pharmacotherapeutic Drug Monitoring</td>
<td>70</td>
<td>30</td>
</tr>
<tr>
<td>5.4</td>
<td>Clerkship *</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>5.5</td>
<td>Project work (Six Months)</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Total</td>
<td></td>
<td>300</td>
<td></td>
</tr>
</tbody>
</table>

* Attending ward rounds on daily basis.

** 30 marks – viva-voce (oral)

70 marks – Thesis work

Sixth Year Pharm D:

Internship or residency training including postings in speciality units. Student should independently provide the clinical pharmacy services to the allotted wards.

(i) Six months in General Medicine department, and
(ii) Two months each in three other speciality departments
First Year Pharm D (Post Baccalaureate):

<table>
<thead>
<tr>
<th>S.No.</th>
<th>Name of Subject</th>
<th>No. of hours of Theory</th>
<th>No. of hours of Practical/Hospital Posting</th>
<th>No. of hours of Tutorial</th>
</tr>
</thead>
<tbody>
<tr>
<td>(1)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4.1</td>
<td>Pharmacotherapeutics-III</td>
<td>3</td>
<td>3</td>
<td>1</td>
</tr>
<tr>
<td>4.2</td>
<td>Hospital Pharmacy</td>
<td>2</td>
<td>3</td>
<td>1</td>
</tr>
<tr>
<td>4.3</td>
<td>Clinical Pharmacy</td>
<td>3</td>
<td>3</td>
<td>1</td>
</tr>
<tr>
<td>4.4</td>
<td>Biostatistics & Research Methodology</td>
<td>2</td>
<td>-</td>
<td>1</td>
</tr>
<tr>
<td>4.5</td>
<td>Biopharmaceutics & Pharmacokinetics</td>
<td>3</td>
<td>3</td>
<td>1</td>
</tr>
<tr>
<td>4.6</td>
<td>Clinical Toxicology</td>
<td>2</td>
<td>-</td>
<td>1</td>
</tr>
<tr>
<td>4.7</td>
<td>Pharmacotherapeutics- I & II*</td>
<td>3</td>
<td>3</td>
<td>1</td>
</tr>
</tbody>
</table>

Total hours 18 15 7 = 40

* Additional subject for Pharm.D (Post Baccalaureate) students

First Year Pharm D (Post Baccalaureate) Examination:

<table>
<thead>
<tr>
<th>S.No.</th>
<th>Name of Subject</th>
<th>Maximum marks for Theory</th>
<th>Maximum marks for Practicals</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Examination</td>
<td>Sessional</td>
</tr>
<tr>
<td>4.1</td>
<td>Pharmacotherapeutics-III</td>
<td>70</td>
<td>30</td>
</tr>
<tr>
<td>4.2</td>
<td>Hospital Pharmacy</td>
<td>70</td>
<td>30</td>
</tr>
<tr>
<td>4.3</td>
<td>Clinical Pharmacy</td>
<td>70</td>
<td>30</td>
</tr>
<tr>
<td>4.4</td>
<td>Biostatistics & Research Methodology</td>
<td>70</td>
<td>30</td>
</tr>
<tr>
<td>4.5</td>
<td>Biopharmaceutics & Pharmacokinetics</td>
<td>70</td>
<td>30</td>
</tr>
<tr>
<td>4.6</td>
<td>Clinical Toxicology</td>
<td>70</td>
<td>30</td>
</tr>
<tr>
<td>4.7</td>
<td>Pharmacotherapeutics- I & II*</td>
<td>70</td>
<td>30</td>
</tr>
</tbody>
</table>

700 500 = 1200
Second Year Pharm D (Post Baccalaurate):

<table>
<thead>
<tr>
<th>S.No.</th>
<th>Name of Subject</th>
<th>No. of hours of Theory</th>
<th>No. of hours of Hospital posting*</th>
<th>No. of hours of Seminar</th>
</tr>
</thead>
<tbody>
<tr>
<td>5.1</td>
<td>Clinical Research</td>
<td>3</td>
<td>-</td>
<td>1</td>
</tr>
<tr>
<td>5.2</td>
<td>Pharmacoepidemiology and Pharmacoeconomics</td>
<td>3</td>
<td>-</td>
<td>1</td>
</tr>
<tr>
<td>5.3</td>
<td>Clinical Pharmacokinetics & Pharmacotherapeutic Drug Monitoring</td>
<td>2</td>
<td>-</td>
<td>1</td>
</tr>
<tr>
<td>5.4</td>
<td>Clerkship *</td>
<td>-</td>
<td>-</td>
<td>1</td>
</tr>
<tr>
<td>5.5</td>
<td>Project work (Six Months)</td>
<td>-</td>
<td>20</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>Total hours</td>
<td>8</td>
<td>20</td>
<td>4 = 32</td>
</tr>
</tbody>
</table>

* Attending ward rounds on daily basis.

Second Year Pharm D (Post Baccalaurate) examination:

<table>
<thead>
<tr>
<th>S.No.</th>
<th>Name of Subject</th>
<th>Maximum marks for Theory</th>
<th>Maximum marks for Practicals</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Examination</td>
<td>Sessional</td>
</tr>
<tr>
<td>5.1</td>
<td>Clinical Research</td>
<td>70</td>
<td>30</td>
</tr>
<tr>
<td>5.2</td>
<td>Pharmacoepidemiology and Pharmacoeconomics</td>
<td>70</td>
<td>30</td>
</tr>
<tr>
<td>5.3</td>
<td>Clinical Pharmacokinetics & Pharmacotherapeutic Drug Monitoring</td>
<td>70</td>
<td>30</td>
</tr>
<tr>
<td>5.4</td>
<td>Clerkship *</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>5.5</td>
<td>Project work (Six Months)</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td></td>
<td>300</td>
<td></td>
</tr>
</tbody>
</table>

* Attending ward rounds on daily basis.
** 30 marks – viva-voce (oral)
 70 marks – Thesis work

Third Year Pharm D (Post Baccalaurate):

Internship or residency training including postings in speciality units. Student should independently provide the clinical pharmacy services to the allotted wards.

(i) Six months in General Medicine department, and
(ii) Two months each in three other speciality departments
PHARM. D. and PHARM. D (Post Baccalaureate) SYLLABUS

First Year

1.1 HUMAN ANATOMY & PHYSIOLOGY (THEORY)

Theory : 3 Hrs. /Week

1. **Scope and Objectives:** This course is designed to impart a fundamental knowledge on the structure and functions of the human body. It also helps in understanding both homeostasis mechanisms and homeostatic imbalances of various body systems. Since a medicament, which is produced by pharmacist, is used to correct the deviations in human body, it enhances the understanding of how the drugs act on the various body systems in correcting the disease state of the organs.

2. **Upon completion of the course the student shall be able to:**
 a. describe the structure (gross and histology) and functions of various organs of the human body;
 b. describe the various homeostatic mechanisms and their imbalances of various systems;
 c. identify the various tissues and organs of the different systems of the human body;
 d. perform the hematological tests and also record blood pressure, heart rate, pulse and Respiratory volumes;
 e. appreciate coordinated working pattern of different organs of each system; and
 f. appreciate the interlinked mechanisms in the maintenance of normal functioning (homeostasis) of human body

3. **Course materials:**
 Text books
 a. Tortora Gerard J. and Nicholas, P. Principles of anatomy and physiology Publisher Harpercollins college New York.
 Reference books
 c. Peter L. Williams, Roger Warwick, Mary Dyson and Lawrence, H.
4. Lecture wise program:

Topics

1. Scope of anatomy and physiology, basic terminologies used in this subject
 (Description of the body as such planes and terminologies)

2. Structure of cell – its components and their functions.

3. Elementary tissues of the human body: epithelial, connective, Muscular and nervous tissues-their sub-types and characteristics

4. a) Osseous system - structure, composition and functions of the
 Skeleton. (done in practical classes - 6hrs)
 b) Classification of joints, Types of movements of joints and disorders of joints
 (Definitions only)

5. Haemopoietic System
 a) Composition and functions of blood
 b) Haemopoesis and disorders of blood components (definition of disorder)
 c) Blood groups
 d) Clotting factors and mechanism
 e) Platelets and disorders of coagulation

6. Lymph
 a) Lymph and lymphatic system, composition, formation and circulation.
 b) Spleen: structure and functions, Disorders
 c) Disorders of lymphatic system (definition only)

7. Cardiovascular system
 a) Anatomy and functions of heart
 b) Blood vessels and circulation (Pulmonary, coronary and systemic circulation)
 c) Electrocardiogram (ECG)
 d) Cardiac cycle and heart sounds
 e) Blood pressure – its maintenance and regulation
 f) Definition of the following disorders
 Hypertension, Hypotension, Arteriosclerosis, Atherosclerosis, Angina,
 Myocardial infarction, Congestive heart failure, Cardiac arrhythmias

8. Respiratory system
 a) Anatomy of respiratory organs and functions
 b) Mechanism / physiology of respiration and regulation of respiration
 c) Transport of respiratory gases
 d) Respiratory volumes and capacities, and Definition of: Hypoxia, Asphyxia,
 Dybarism, Oxygen therapy and resuscitation.

9. Digestive system
 a) Anatomy and physiology of GIT
 b) Anatomy and functions of accessory glands of GIT
 c) Digestion and absorption
 d) Disorders of GIT (definitions only)
10 Nervous system
 a) Definition and classification of nervous system
 b) Anatomy, physiology and functional areas of cerebrum
 c) Anatomy and physiology of cerebellum
 d) Anatomy and physiology of mid brain
 e) Thalamus, hypothalamus and Basal Ganglia
 f) Spinal card: Structure & reflexes – mono-poly-planter
 g) Cranial nerves – names and functions
 h) ANS – Anatomy & functions of sympathetic & parasympathetic N.S.

11 Urinary system
 a) Anatomy and physiology of urinary system
 b) Formation of urine
 c) Renin Angiotensin system – Juxtaglomerular apparatus - acid base Balance
 d) Clearance tests and micturition

12 Endocrine system
 a) Pituitary gland
 b) Adrenal gland
 c) Thyroid and Parathyroid glands
 d) Pancreas and gonads

13 Reproductive system
 a) Male and female reproductive system
 b) Their hormones – Physiology of menstruation
 c) Spermatogenesis & Oogenesis
 d) Sex determination (genetic basis)
 e) Pregnancy and maintenance and parturition
 f) Contraceptive devices

14 Sense organs
 a) Eye
 b) Ear
 c) Skin
 d) Tongue & Nose

15 Skeletal muscles
 a) Histology
 b) Physiology of Muscle contraction
 c) Physiological properties of skeletal muscle and their disorders (definitions)

16 Sports physiology
 a) Muscles in exercise, Effect of athletic training on muscles and muscle performance,
 b) Respiration in exercise, CVS in exercise, Body heat in exercise, Body fluids and salts in exercise,
 c) Drugs and athletics
1.1 HUMAN ANATOMY & PHYSIOLOGY (PRACTICAL)

Practical : 3 Hrs./Week

General Requirements: Dissection box, Laboratory Napkin, muslin cloth, record, Observation book(100 pages), Stationary items, Blood lancet.

Course materials:

Text books

Reference books
Ranade VG, Text book of practical physiology, Latest edition, Publisher: PVG, Pune Anderson Experimental Physiology, Latest edition, Publisher: NA

List of Experiments:

1. Study of tissues of human body
 (a) Epithelial tissue.
 (b) Muscular tissue.

2. Study of tissues of human body
 (a) Connective tissue.
 (b) Nervous tissue.

3. Study of appliances used in hematological experiments.

7. Determination of
 (a) Erythrocyte Sedimentation Rate.
 (b) Hemoglobin content of Blood.
 (c) Bleeding time & Clotting time.

8. Determination of
 (a) Blood Pressure.
 (b) Blood group.

9. Study of various systems with the help of charts, models & specimens
 (a) Skeleton system part I- axial skeleton.
 (b) Skeleton system part II- appendicular skeleton.
 (c) Cardiovascular system.
 (d) Respiratory system.
(e) Digestive system.
(f) Urinary system.
(g) Nervous system.
(h) Special senses.
(i) Reproductive system.

10. Study of different family planning appliances.
11. To perform pregnancy diagnosis test.
12. Study of appliances used in experimental physiology.
13. To record simple muscle curve using gastroenemius sciatic nerve preparation.
14. To record simple summation curve using gastroenemius sciatic nerve preparation.
15. To record simple effect of temperature using gastroenemius sciatic nerve preparation.
17. To record simple fatigue curve using gastroenemius sciatic nerve preparation.

Scheme of Practical Examination:

<table>
<thead>
<tr>
<th></th>
<th>Sessionals</th>
<th>Annual</th>
</tr>
</thead>
<tbody>
<tr>
<td>Identification</td>
<td>04</td>
<td>10</td>
</tr>
<tr>
<td>Synopsis</td>
<td>04</td>
<td>10</td>
</tr>
<tr>
<td>Major Experiment</td>
<td>07</td>
<td>20</td>
</tr>
<tr>
<td>Minor Experiment</td>
<td>03</td>
<td>15</td>
</tr>
<tr>
<td>Viva</td>
<td>02</td>
<td>15</td>
</tr>
<tr>
<td>Max Marks</td>
<td>20</td>
<td>70</td>
</tr>
<tr>
<td>Duration</td>
<td>03hrs</td>
<td>04hrs</td>
</tr>
</tbody>
</table>

Note: Total sessional marks is 30 (20 for practical sessional plus 10 marks for regularity, promptness, viva-voce and record maintenance).
1.2 PHARMACEUTICS (THEORY)

Theory : 2 Hrs. /Week

1. Scope and objectives: This course is designed to impart a fundamental knowledge on the art and science of formulating different dosage forms. It prepares the students for most basics of the applied field of pharmacy.

2. Upon the completion of the course the student should be able to:
 a. know the formulation aspects of different dosage forms;
 b. do different pharmaceutical calculation involved in formulation;
 c. formulate different types of dosage forms; and
 d. appreciate the importance of good formulation for effectiveness.

3. Course materials:
 Text books
 a. Cooper and Gunns Dispensing for pharmacy students.

 Reference books
 a. Introduction to Pharmaceutical dosage forms by Howard C. Ansel.
 b. Remington’s Pharmaceutical Sciences.
 c. Register of General Pharmacy by Cooper and Gunn.
 d. General Pharmacy by M.L.Schroff.
 e. Indian Pharmacopoeia (Latest edition)
 f. British Pharmacopoeia (Latest edition)
 g. US Pharmacopoeia (Latest edition)

4. Lecture wise programme:
 Topics
 1 a. Introduction to dosage forms - classification and definitions
 b. Prescription: definition, parts and handling
 2 Historical back ground and development of profession of pharmacy and pharmaceutical industry in brief.
 3 Development of Indian Pharmacopoeia and introduction to other Pharmacopoeias such as BP, USP, European Pharmacopoeia, Extra pharmacopoeia and Indian national formulary.
 4 Weights and measures, Calculations involving percentage solutions, allegation, proof spirit, isotonic solutions etc.
 5 Powders and Granules: Classification advantages and disadvantages, Preparation of simple, compound powders, Insufflations, Dusting powders, Eutectic and Explosive powders, Tooth powder and effervescent powders and granules.
 6 Monophasic Dosage forms: Theoretical aspects of formulation including adjuvant like stabilizers, colorants, flavours with examples. Study of Monophasic liquids like gargles, mouth washes, Throat paint, Ear drops, Nasal drops, Liniments and lotions, Enemas and collodions.
7 Biphasic dosage forms: Suspensions and emulsions, Definition, advantages and disadvantages, classification, test for the type of emulsion, formulation, stability and evaluation.
8 Suppositories and pessaries: Definition, advantages and disadvantages, types of base, method of preparation, Displacement value and evaluation.
9 Galenicals: Definition, equipment for different extraction processes like infusion, Decoction, Maceration and Percolation, methods of preparation of spirits, tinctures and extracts.
10 Pharmaceutical calculations.
11 Surgical aids: Surgical dressings, absorbable gelatin sponge, sutures, ligatures and medicated bandages.
12 Incompatibilities: Introduction, classification and methods to overcome the incompatibilities.

1.2 PHARMACEUTICS (PRACTICAL)

Practical : 3 Hrs./Week

List of Experiments:

1. **Syrups**
 a. Simple Syrup IP
 b. Syrup of Ephedrine Hcl NF
 c. Syrup Vasaka IP
 d. Syrup of ferrous Phosphate IP
 e. Orange Syrup

2. **Elixir**
 a. Piperazine citrate elixir BP
 b. Cascara elixir BPC
 c. Paracetamol elixir BPC

3. **Linctus**
 a. Simple Linctus BPC
 b. Pediatric simple Linctus BPC

4. **Solutions**
 a. Solution of cresol with soap IP
 b. Strong solution of ferric chloride BPC
 c. Aqueous Iodine Solution IP
 d. Strong solution of Iodine IP
 e. Strong solution of ammonium acetate IP

5. **Liniments**
 a. Liniment of turpentine IP*
 b. Liniment of camphor IP
6. **Suspensions**
 a. Calamine lotion
 b. Magnesium Hydroxide mixture BP

7. **Emulsions**
 a. Cod liver oil emulsion
 b. Liquid paraffin emulsion

8. **Powders**
 a. Eutectic powder
 b. Explosive powder
 c. Dusting powder
 d. Insufflations

9. **Suppositories**
 a. Boric acid suppositories
 b. Chloral suppositories

10. **Incompatibilities**
 a. Mixtures with Physical
 b. Chemical & Therapeutic incompatibilities

* colourless bottles required for dispensing
* Paper envelope (white), butter paper and white paper required for dispensing.

Scheme of Practical Examination:

<table>
<thead>
<tr>
<th></th>
<th>Sessionals</th>
<th>Annual</th>
</tr>
</thead>
<tbody>
<tr>
<td>Synopsis</td>
<td>05</td>
<td>15</td>
</tr>
<tr>
<td>Major Experiment</td>
<td>10</td>
<td>25</td>
</tr>
<tr>
<td>Minor Experiment</td>
<td>03</td>
<td>15</td>
</tr>
<tr>
<td>Viva</td>
<td>02</td>
<td>15</td>
</tr>
<tr>
<td>Max Marks</td>
<td>20</td>
<td>70</td>
</tr>
<tr>
<td>Duration</td>
<td>03hrs</td>
<td>04hrs</td>
</tr>
</tbody>
</table>

Note: Total sessional marks is 30 (20 for practical sessional plus 10 marks for regularity, promptness, viva-voce and record maintenance).
1.3 MEDICINAL BIOCHEMISTRY (THEORY)

Theory : 3 Hrs. /Week

1. **Scope of the Subject:** Applied biochemistry deals with complete understanding of the molecular level of the chemical process associated with living cells. Clinical chemistry deals with the study of chemical aspects of human life in health and illness and the application of chemical laboratory methods to diagnosis, control of treatment, and prevention of diseases.

2. **Objectives of the Subject** (Know, do, appreciate):

 The objective of the present course is providing biochemical facts and the principles to the students of pharmacy. Upon completion of the subject student shall be able to –

 a. Understand the catalytic activity of enzymes and importance of isoenzymes in diagnosis of diseases;
 b. know the metabolic process of biomolecules in health and illness (metabolic disorders);
 c. understand the genetic organization of mammalian genome; protein synthesis; replication; mutation and repair mechanism;
 d. know the biochemical principles of organ function tests of kidney, liver and endocrine gland; and
 e. do the qualitative analysis and determination of biomolecules in the body fluids.

Text books (Theory)

a. Harpers review of biochemistry - Martin
b. Text book of biochemistry – D.Satyanarayana
c. Text book of clinical chemistry- Alex kaplan &Laverve L.Szabo

Reference books (Theory)

a. Principles of biochemistry -- Lehninger
b. Text book of biochemistry -- Ramarao
c. Practical Biochemistry-David T.Plummer.
d. Practical Biochemistry-Pattabhiraman.

3. **Lecture wise programme:**

Topics

1. **Introduction to biochemistry:** Cell and its biochemical organization, transport process across the cell membranes. Energy rich compounds; ATP, Cyclic AMP and their biological significance.

2. **Enzymes:** Definition; Nomenclature; IUB classification; Factor affecting enzyme activity; Enzyme action; enzyme inhibition. Isoenzymes and their therapeutic and diagnostic applications; Coenzymes and their biochemical role and deficiency diseases.

3. **Carbohydrate metabolism:** Glycolysis, Citric acid cycle (TCA cycle), HMP shunt, Glycogenolysis, gluconeogenesis, glycogenesis. Metabolic disorders of carbohydrate metabolism (diabetes mellitus and glycogen storage diseases); Glucose, Galactose tolerance test and their significance; hormonal regulation of carbohydrate metabolism.
4 **Lipid metabolism:** Oxidation of saturated (β-oxidation); Ketogenesis and ketolysis; biosynthesis of fatty acids, lipids; metabolism of cholesterol; Hormonal regulation of lipid metabolism. Defective metabolism of lipids (Atherosclerosis, fatty liver, hypercholesterolemia).

5 **Biological oxidation:** Coenzyme system involved in Biological oxidation. Electron transport chain (its mechanism in energy capture; regulation and inhibition); Uncouplers of ETC; Oxidative phosphorylation;

6 **Protein and amino acid metabolism:** protein turn over; nitrogen balance; Catabolism of Amino acids (Transamination, deamination & decarboxylation). Urea cycle and its metabolic disorders; production of bile pigments; hyperbilirubinemia, porphoria, jaundice. Metabolic disorder of Amino acids.

7 **Nucleic acid metabolism:** Metabolism of purine and pyrimidine nucleotides; Protein synthesis; Genetic code; inhibition of protein synthesis; mutation and repair mechanism; DNA replication (semiconservative /onion peel models) and DNA repair mechanism.

8 **Introduction to clinical chemistry:** Cell; composition; malfunction; Roll of the clinical chemistry laboratory.

9 **The kidney function tests:** Role of kidney; Laboratory tests for normal function includes-
 a) Urine analysis (macroscopic and physical examination, quantitative and semiquantitative tests.)
 b) Test for NPN constituents. (Creatinine /urea clearance, determination of blood and urine creatinine, urea and uric acid)
 c) Urine concentration test
 d) Urinary tract calculi. (stones)

10 **Liver function tests:** Physiological role of liver, metabolic, storage, excretory, protective, circulatory functions and function in blood coagulation.
 a) Test for hepatic dysfunction-Bile pigments metabolism.
 b) Test for hepatic function test- Serum bilirubin, urine bilirubin, and urine urobilinogen.
 c) Dye tests of excretory function.
 d) Tests based upon abnormalities of serum proteins.
 Selected enzyme tests.

11 **Lipid profile tests:** Lipoproteins, composition, functions. Determination of serum lipids, total cholesterol, HDL cholesterol, LDL cholesterol and triglycerides.

12 **Immunochemical techniques** for determination of hormone levels and protein levels in serum for endocrine diseases and infectious diseases.

Radio immuno assay (RIA) and Enzyme Linked Immuno Sorbent Assay (ELISA)

13 **Electrolytes:** Body water, compartments, water balance, and electrolyte distribution. Determination of sodium, calcium potassium, chlorides, bicarbonates in the body fluids.
1.3 MEDICINAL BIOCHEMISTRY (PRACTICAL)

Practical : 3 Hrs./Week

Title of the Experiment:
1. Qualitative analysis of normal constituents of urine.*
2. Qualitative analysis of abnormal constituents of urine.*
3. Quantitative estimation of urine sugar by Benedict’s reagent method.**
4. Quantitative estimation of urine chlorides by Volhard's method.**
5. Quantitative estimation of urine creatinine by Jaffe’s method.**
6. Quantitative estimation of urine calcium by precipitation method.**
7. Quantitative estimation of serum cholesterol by Libermann Burchard’s method.**
8. Preparation of Folin Wu filtrate from blood.*
9. Quantitative estimation of blood creatinine.**
10. Quantitative estimation of blood sugar Folin-Wu tube method.**
11. Estimation of SGOT in serum.**
12. Estimation of SGPT in serum.**
13. Estimation of Urea in Serum.**
14. Estimation of Proteins in Serum.**
15. Determination of serum bilirubin**
16. Determination of Glucose by means of Glucoseoxidase.**
17. Enzymatic hydrolysis of Glycogen/Starch by Amylases.**
18. Study of factors affecting Enzyme activity. (pH & Temp.)**
19. Preparation of standard buffer solutions and its pH measurements (any two)*
20. Experiment on lipid profile tests**
21. Determination of sodium,calcium and potassium in serum.**

** indicate major experiments & * indicate minor experiments

Assignments:
Format of the assignment
1. Minimum & Maximum number of pages.
2. It shall be computer draft copy.
3. Reference(s) shall be included at the end.
4. Name and signature of the student.
5. Assignment can be a combined presentation at the end of the academic year.
6. Time allocated for presentation may be 8+2 Min.

Scheme of Practical Examination:

<table>
<thead>
<tr>
<th>Sessionals</th>
<th>Annual</th>
</tr>
</thead>
<tbody>
<tr>
<td>Synopsis</td>
<td>05</td>
</tr>
<tr>
<td>Major Experiment</td>
<td>10</td>
</tr>
<tr>
<td>Minor Experiment</td>
<td>03</td>
</tr>
<tr>
<td>Viva</td>
<td>02</td>
</tr>
<tr>
<td>Max Marks</td>
<td>20</td>
</tr>
<tr>
<td>Duration</td>
<td>03hrs</td>
</tr>
</tbody>
</table>

Note: Total sessional marks is 30 (20 for practical sessional plus 10 marks for regularity, promptness, viva-voce and record maintenance).
1.4 PHARMACEUTICAL ORGANIC CHEMISTRY (THEORY)

Theory : 3 Hrs. /Week

1. Scope and objectives: This course is designed to impart a very good knowledge about
 a. IUPAC/Common system of nomenclature of simple organic compounds
 belonging to different classes of organic compounds;
 b. Some important physical properties of organic compounds;
 c. Free radical/ nucleophilic [alkyl/ acyl/ aryl] /electrophilic substitution, free
 radical/ nucleophilic / electrophilic addition, elimination, oxidation and
 reduction reactions with mechanism, orientation of the reaction, order of
 reactivity, stability of compounds;
 d. Some named organic reactions with mechanisms; and
 e. Methods of preparation, test for purity, principle involved in the assay, important
 medicinal uses of some important organic compounds.

2. Course materials:
 Text books
 a. T.R.Morrison and R. Boyd - Organic chemistry,
 b. Bentley and Driver-Text book of Pharmaceutical chemistry
 c. I.L.Finar- Organic chemistry, the fundamentals of chemistry

 Reference books
 a. Organic chemistry – J.M.Cram and D.J.Cram
 b. Organic chemistry- Brown
 c. Advanced organic chemistry- Jerry March, Wiley
 d. Organic chemistry- Cram and Hammered, Pine Hendrickson

3. Lecture wise programme:

 Topics
 1 Structures and Physical properties:
 a. Polarity of bonds, polarity of molecules, M.P, Inter molecular forces, B.P,
 Solubility, non ionic solutes and ionic solutes, protic and aprotic Solvents, ion
 pairs,
 b. Acids and bases, Lowry bronsted and Lewis theories
 c. Isomerism
 2 Nomenclature of organic compound belonging to the following classes Alkanes,
 Alkenes, Dienes, Alkynes, Alcohols, Aldehydes, Ketones, Amides, Amines,
 Phenols, Alkyl Halides, Carboxylic Acid, Esters, Acid Chlorides And
 Cycloalkanes.
 3 Free radicals chain reactions of alkane : Mechanism, relative reactivity and stability
 4 Alicyclic compounds : Preparations of cyclo alkanes, Bayer strain theory and
 orbital picture of angle strain.
 5 Nucleophilic aliphatic substitution mechanism: Nucleophiles and leaving groups,
 kinetics of second and first order reaction, mechanism and kinetics of SN2
 reactions. Stereochemistry and steric hindrance, role of solvents, phase transfer
 catalysis, mechanism and kinetics of SN1 reactions, stereochemistry, carbocation
 and their stability, rearrangement of carbocation, role of solvents in SN1 reaction,
 Ion dipole bonds, SN2 versus SN1 solvolyses, nucleophilic assistance by the
 solvents.
6 Dehydro halogenation of alkyl halides: 1,2 elimination, kinetics, E2 and E1 mechanism, elimination via carbocation, evidence for E2 mechanism, absence of rearrangement isotope effect, absence hydrogen exchange, the element effect, orientation and reactivity, E2 versus E1, elimination versus substitution, dehydration of alcohol, ease of dehydration, acid catalysis, reversibility, orientation.

7 Electrophillic and free radicals addition: Reactions at carbon-carbon, double bond, electrophile, hydrogenation, heat of hydrogenation and stability of alkenes, markownikoff rule, addition of hydrogen halides, addition of hydrogen bromides, peroxide effect, electrophillic addition, mechanism, rearrangement, absence of hydrogen exchange, orientation and reactivity, addition of halogen, mechanism, halohydin formation, mechanism of free radicals addition, mechanism of peroxide initiated addition of hydrogen bromide, orientation of free addition, additions of carbene to alkene, cycloaddition reactions.

8 Carbon-carbon double bond as substituents: Free radical halogenations of alkenes, comparison of free radical substitution with free radical addition, free radical substitution in alkenes, orientation and reactivity, allylic rearrangements.

9 Theory of resonance: Allyl radical as a resonance hybrid, stability, orbital picture, resonance stabilisation of allyl radicals, hyper conjugation, allyl cation as a resonance hybrid, nucleophilic substitution in allylic substrate, SN1 reactivity, allylic rearrangement, resonance stabilisation of allyl cation, hyper conjugation, nucleophilic substitution in allylic substrate, SN2 nucleophilic substitution in vinylic substrate, vinylic cation, stability of conjugated dienes, resonance in alkenes, hyper conjugation, ease of formation of conjugated dienes, orientation of elimination, electrophilic addition to conjugated dienes, 1,4-addition, 1,2-versus 1,4-addition, rate versus equilibrium, orientation and reactivity of free radical addition to conjugated dienes.

10 Electrophilic aromatic substitution: Effect of substituent groups, determination of orientation, determination of relative reactivity, classification of substituent group, mechanism of nitration, sulphonation, halogenation, Friedel craft alkylation, Friedel craft acylation, reactivity and orientation, activating and deactivating O,P,M directing groups, electron release via resonance, effect of halogen on electrophilic aromatic substitution in alkyl benzene, side chain halogination of alkyl benzene, resonance stabilization of benzyl radical.

11 Nucleophilic addition reaction: Mechanism, ionisation of carboxylic acids, acidity constants, acidity of acids, structure of carboxylate ions, effect of substituent on acidity, nucleophilic acyl substitution reaction, conversion of acid to acid chloride, esters, amide and anhydride. Role of carboxyl group, comparison of alkyl nucleophilic substitution with acyl nucleophilic substitution.

12 Mechanism of aldol condensation, claisen condensation, cannizzaro reaction, crossed aldol condensation, crossed cannizzaro reaction, benzoic condensation, perkin condensation. Knoevenagel, Reformatsky reaction, Wittig reaction, Michael addition.

13 Hoffman rearrangement: Migration to electron deficient nitrogen, Sandmeyer’s reaction, basicity of amines, diazotisation and coupling, acidity of phenols, Williamson synthesis, Fries rearrangement, Kolbe reaction, Reimer tiemann’s reactions.

14 Nucleophilic aromatic substitution: Bimolecular displacement mechanisms, orientation, comparison of aliphatic nucleophilic substitution with that of aromatic.

15 Oxidation reduction reaction.
16 Study of the following official compounds- preparation, test for purity, assay and medicinal uses of Chlorbutol, Dimercaprol, Glyceryl trinitrate, Urea, Ethylene diamine dihydrate, Vanillin, Paraldehyde, Ethylene chloride, Lactic acid, Tartaric acid, citric acid, salicylic acid, aspirin, methyl salicylate, ethyl benzoate, benzyl benzoate, dimethyl phthalate, sodium lauryl sulphate, saccharin sodium, mephensin.

1.4 PHARMACEUTICAL ORGANIC CHEMISTRY (PRACTICAL)

Practical : 3 Hrs./Week

I. Introduction to the various laboratory techniques through demonstration involving synthesis of the following compounds (at least 8 compounds to be synthesised):
1. Acetanilide / aspirin (Acetylation)
2. Benzanilide / Phenyl benzoate (Benzoylation)
3. P-bromo acetanilide / 2,4,6 – tribromo aniline (Bromination)
4. Dibenzyldiene acetone (Condensation)
5. 1-Phenylazo-2-naphthol (Diazotisation and coupling)
6. Benzoic acid / salicylic acid (Hydrolysis of ester)
7. M-dinitro benzene (Nitration)
8. 9, 10 – Antharaquinone (Oxidation of anthracene) / preparation of benzoic acid from toluene or benzaldehyde
9. M-phenylene diamine (Reduction of M-dinitrobenzene) / Aniline from nitrobenzene
10. Benzophenone oxime
11. Nitration of salicylic acid
12. Preparation of picric acid
13. Preparation of O-chlorobenzoic acid from O-chlorotolune
14. Preparation of cyclohexanone from cyclohexanol

II. Identification of organic compounds belonging to the following classes by :
Systematic qualitative organic analysis including preparation of derivatives Phenols, amides, carbohydrates, amines, carboxylic acids, aldehyde and ketones, Alcohols, esters, hydrocarbons, anilides, nitrocompounds.

III. Introduction to the use of stereo models:
Methane, Ethane, Ethylene, Acetylene, Cis alkene, Trans alkene, inversion of configuration.

Scheme of Practical Examination:

<table>
<thead>
<tr>
<th></th>
<th>Sessionals</th>
<th>Annual</th>
</tr>
</thead>
<tbody>
<tr>
<td>Synopsis</td>
<td>05</td>
<td>15</td>
</tr>
<tr>
<td>Major Experiment</td>
<td>10</td>
<td>25</td>
</tr>
<tr>
<td>Minor Experiment</td>
<td>03</td>
<td>15</td>
</tr>
<tr>
<td>Viva</td>
<td>02</td>
<td>15</td>
</tr>
<tr>
<td>Max Marks</td>
<td>20</td>
<td>70</td>
</tr>
<tr>
<td>Duration</td>
<td>03hrs</td>
<td>04hrs</td>
</tr>
</tbody>
</table>

Note: Total sessional marks is 30 (20 for practical sessional plus 10 marks for regularity, promptness, viva-voce and record maintenance).
1.5 PHARMACEUTICAL INORGANIC CHEMISTRY (THEORY)

Theory : 2 Hrs./Week

1. Scope and objectives: This course mainly deals with fundamentals of Analytical chemistry and also the study of inorganic pharmaceuticals regarding their monographs and also the course deals with basic knowledge of analysis of various pharmaceuticals.

2. Upon completion of the course student shall be able to:
 a. understand the principles and procedures of analysis of drugs and also regarding the application of inorganic pharmaceuticals;
 b. know the analysis of the inorganic pharmaceuticals their applications; and
 c. Appreciate the importance of inorganic pharmaceuticals in preventing and curing the disease.

3. Course materials:
 Text books
 a. A text book Inorganic medicinal chemistry by Surendra N. Pandeya
 b. A. H. Beckett and J. B. Stenlake’s Practical Pharmaceutical chemistry Vol-I & Vol-II

 Reference books
 a. Inorganic Pharmaceutical Chemistry by Anand & Chetwal
 b. Pharmaceutical Inorganic chemistry by Dr.B.G.Nagavi
 c. Analytical chemistry principles by John H. Kennedy

4. Lecture wise programme:

 1. Errors
 Errors in quantitative analysis, classification of errors, concept of accuracy and precision, treatment of analytical results.

 2. Volumetric analysis
 Principle of volumetric analysis, different methods of analysis, different methods for expressing concentrations of solutions, primary and secondary standards.

 3. Acid-base titrations
 Acid-base concepts, relative strength of acids and bases, law of mass action, common ion effect, ionic product of water, Henderson-Hasselbalch equation, buffer solutions, theory of indicators, neutralization curves, choice of indicators, mixed and universal indicators.

 4. Redox titrations
 Concepts of oxidation-reduction reactions, redox reactions, theory of redox titrations, redox indicators, iodometry and iodiometry, titrations involving ceric sulphate, potassium iodate, potassium bromate, potassium permanganate, titanous chloride.
5. **Non aqueous titration**
Theoretical basis, types of solvents, preparations and standardization of titrant solutions, titration of weak acid, weak bases and indicators. Standardisation of perchloric acid, lithium and sodium methoxide, tetra butyl ammonium hydroxide.

6. **Precipitation titrations**
Introduction, types of precipitation titrations, end point detection.

7. **Complexometric titrations**
Introduction, principle, types of titrations, endpoint detection.

8. **Theory of Indicators**

9. **Gravimetry**
Basic concepts, Precipitation techniques, co-precipitation, post-precipitation, various steps involved in gravimetric analysis, pharmaceutical applications.

10. **Limit tests**
Definition, importance, general procedure for limit test for chlorides, sulphates, iron, arsenic, lead and heavy metals.

11. **Medicinal Gases**
Preparation and uses of the following Oxygen, Carbon dioxide, Helium, Nitrogen and Nitrous Oxide.

Method of preparation, assay, storage conditions and uses of inorganic compounds listed in I.P belonging to the following categories.

12. **Acidifiers**
Dilute hydrochloric acid, Sodium phosphate, Ammonium chloride.

13. **Antacids**
Classification, Qualities of an ideal antacid, side effects, advantages, combination therapy, acid neutralizing capacity, Sodium bicarbonate, Potassium citrate, Aluminium hydroxide gel, Dried aluminium hydroxide gel, Magnesium hydroxide, Light and heavy magnesium trisilicate, light and heavy magnesium carbonate, Calcium carbonate, Magaldrate and Bismuth carbonate.

14. **Cathartics**
Magnesium hydroxide, Magnesium sulphate, Magnesium carbonate and Sodium phosphate.

15. **Electrolyte replenisher**
Electrolytes used for replacement therapy: Sodium chloride, Potassium chloride, Calcium chloride, Calcium gluconate,
Electrolytes used in the acid-base therapy: Sodium acetate, Potassium acetate, Sodium bicarbonate, Potassium bicarbonate, Sodium citrate, Sodium lactate, Ammonium chloride. Electrolyte combination therapy, Compound sodium chloride solution, Sodium chloride injection and Oral rehydration salt.

16. Essential Trace elements
Definition, Physiological role of Iron, Copper, Zinc, Chromium, Manganese, Molybdenum, Selenium, Sulphur and Iodine.

17. Antimicrobials

18. Pharmaceutical Aids: Sodium bisulphite, sodium metabisulphite, bentonite, magnesium stearate, zinc stearate, aluminium sulphate, sodium carboxy methyl cellulose, purified water, water for injection and sterile water for injection.

19. Dental products
Anti-caries Agents: Role of Fluorides as anti-caries agents, Sodium fluoride.
Dentifrices: Calcium carbonate, dibasic calcium phosphate, Zinc chloride.

20. Miscellaneous compounds.
Sclerosing agents: Hypertonic saline, Sodium tetra decyl sulphate.
Expectorants: Potassium citrate and Potassium iodide.
Sedative: Potassium bromide.
Antidotes: Sodium nitrite, Sodium thiosulphate and Charcoal
Respiratory stimulant: Ammonium carbonate.

Introduction, measurement of radioactivity, clinical applications and dosage, hazards and precautions.

1.5 PHARMACEUTICAL INORGANIC CHEMISTRY (PRACTICAL)

Practical: 3 Hrs./Week

1. Limit test (6 exercises)
 a. Limit test for chlorides
 b. Limit test for sulphates
 c. Limit test for iron
 d. Limit test for heavy metals
 e. Limit test for arsenic
 f. Modified limit tests for chlorides and sulphates
2. Assays (10 exercises)
 a. Ammonium chloride- Acid-base titration
 b. Ferrous sulphate- Cermetry
 c. Copper sulphate- Iodometry
 d. Calcilugluconate- Complexometry
 e. Hydrogen peroxide – Permanganometry
 f. Sodium benzoate – Nonaqueous titration
 g. Sodium chloride – Modified volhard’s method
 h. Assay of KI – KIO₃ titration
 i. Gravimetric estimation of barium as barium sulphate
 j. Sodium antimony gluconate or antimony potassium tartarate

3. Estimation of mixture (Any two exercises)
 a. Sodium hydroxide and sodium carbonate
 b. Boric acid and Borax
 c. Oxalic acid and sodium oxalate

4. Test for identity (Any three exercises)
 a. Sodium bicarbonate
 b. Barium sulphate
 c. Ferrous sulphate
 d. Potassium chloride

5. Test for purity (Any two exercises)
 a. Swelling power in Bentonite
 b. Acid neutralising capacity in aluminium hydroxide gel
 c. Ammonium salts in potash alum
 d. Adsorption power heavy Kaolin
 e. Presence of Iodates in KI

6. Preparations (Any two exercises)
 a. Boric acids
 b. Potash alum
 c. Calcium lactate
 d. Magnesium sulphate

Scheme of Practical Examination :

<table>
<thead>
<tr>
<th></th>
<th>Sessionals</th>
<th>Annual</th>
</tr>
</thead>
<tbody>
<tr>
<td>Synopsis</td>
<td>05</td>
<td>15</td>
</tr>
<tr>
<td>Major Experiment</td>
<td>10</td>
<td>25</td>
</tr>
<tr>
<td>Minor Experiment1&2</td>
<td>03</td>
<td>15</td>
</tr>
<tr>
<td>Viva</td>
<td>02</td>
<td>15</td>
</tr>
<tr>
<td>Max Marks</td>
<td>20</td>
<td>70</td>
</tr>
<tr>
<td>Duration</td>
<td>03hrs</td>
<td>04hrs</td>
</tr>
</tbody>
</table>

Note : Total sessional marks is 30 (20 for practical sessional plus 10 marks for regularity, promptness, viva-voce and record maintenance).
1.6 REMEDIAL MATHEMATICS/BIOLOGY (THEORY)

Theory : 3 Hrs. /Week

REMEDIAL MATHEMATICS :

1. **Scope and objectives**: This is an introductory course in mathematics. This subjects deals with the introduction to matrices, determinants, trigonometry, analytical geometry, differential calculus, integral calculus, differential equations, laplace transform.

2. **Upon completion of the course the student shall be able to** :
 a. Know Trignometry, Analytical geometry, Matrices, Determinant, Integration, Differential equation, Laplace transform and their applications;
 b. solve the problems of different types by applying theory; and
 c. appreciate the important applications of mathematics in pharmacy.

3. **Course materials:**
 Text books
 a. Differential calculus By Shantinarayan
 b. Text book of Mathematics for second year pre-university by Prof.B.M.Sreenivas
 Reference books
 a. Integral calculus By Shanthinarayan
 b. Engineering mathematics By B.S.Grewal
 c. Trigonometry Part-I By S.L.Loney

4. **Lecture wise programme** :
 Topics
 1 **Algebra** : Determinants, Matrices
 2 **Trigonometry** : Sides and angles of a triangle, solution of triangles
 3 **Analytical Geometry** : Points, Straight line, circle, parabola
 4 **Differential calculus**: Limit of a function, Differential calculus, Differentiation of a sum, Product, Quotient Composite, Parametric, exponential, trigonometric and Logarithmic function. Successive differentiation, Leibnitz’s theorem, Partial differentiation, Euler’s theorem on homogeneous functions of two variables
 5 **Integral Calculus**: Definite integrals, integration by substitution and by parts, Properties of definite integrals.
 6 **Differential equations**: Definition, order, degree, variable separable, homogeneous, Linear, heterogeneous, linear, differential equation with constant coefficient, simultaneous linear equation of second order.
 7 **Laplace transform**: Definition, Laplace transform of elementary functions, Properties of linearity and shifting.
BIOLOGY:

1. **Scope and objectives**: This is an introductory course in Biology, which gives detailed study of natural sources such as plant and animal origin. This subject has been introduces to the pharmacy course in order to make the student aware of various naturally occurring drugs and its history, sources, classification, distribution and the characters of the plants and animals. This subject gives basic foundation to Pharmacognosy.

2. **Course materials:**

 Text books
 a. Text book of Biology by S.B.Gokhale
 b. A Text book of Biology by Dr.Thulajappa and Dr. Seetaram.

 Reference books
 a. A Text book of Biology by B.V.Sreenivasa Naidu
 b. A Text book of Biology by Naidu and Murthy
 c. Botany for Degree students By A.C.Dutta.
 d. Outlines of Zoology by M.Ekambaranatha ayyer and T.N.Ananthakrishnan.

3. **Lecture wise programme :**

 Topic
 PART – A
 01 Introduction
 02 General organization of plants and its inclusions
 03 Plant tissues
 04 Plant kingdom and its classification
 05 Morphology of plants
 06 Root, Stem, Leaf and Its modifications
 07 Inflorescence and Pollination of flowers
 08 Morphology of fruits and seeds
 09 Plant physiology
 10 Taxonomy of Leguminosae, umbelliferae, Solanaceae, Lilliaceae, Zinziberaceae, Rubiaceae
 11 Study of Fungi, Yeast, Penicillin and Bacteria

 PART-B
 01 Study of Animal cell
 02 Study animal tissues
 03 Detailed study of frog
 04 Study of Pisces, Reptiles, Aves
 05 General organization of mammals
 06 Study of poisonous animals
1.6 BIOLOGY (PRACTICAL)

Practical : 3 Hrs./Week

Title:
1. Introduction of biology experiments
2. Study of cell wall constituents and cell inclusions
3. Study of Stem modifications
4. Study of Root modifications
5. Study of Leaf modifications
6. Identification of Fruits and seeds
7. Preparation of Permanent slides
8. T.S. of Senna, Cassia, Ephedra, Podophyllum.
9. Simple plant physiological experiments
10. Identification of animals
11. Detailed study of Frog
12. Computer based tutorials

Scheme of Practical Examination:

<table>
<thead>
<tr>
<th></th>
<th>Sessionals</th>
<th>Annual</th>
</tr>
</thead>
<tbody>
<tr>
<td>Identification</td>
<td>04</td>
<td>10</td>
</tr>
<tr>
<td>Synopsis</td>
<td>04</td>
<td>10</td>
</tr>
<tr>
<td>Major Experiment</td>
<td>07</td>
<td>20</td>
</tr>
<tr>
<td>Minor Experiment</td>
<td>03</td>
<td>15</td>
</tr>
<tr>
<td>Viva</td>
<td>02</td>
<td>15</td>
</tr>
<tr>
<td>Max Marks</td>
<td>20</td>
<td>70</td>
</tr>
<tr>
<td>Duration</td>
<td>03hrs</td>
<td>04hrs</td>
</tr>
</tbody>
</table>

Note: Total sessional marks is 30 (20 for practical sessional plus 10 marks for regularity, promptness, viva-voce and record maintenance.)
Second year

2.1 PATHOPHYSIOLOGY (THEORY)

Theory : 3 Hrs. /Week

1. Scope of the Subject: This course is designed to impart a thorough knowledge of
the relevant aspects of pathology of various conditions with
reference to its pharmacological applications, and understanding of basic
Pathophysiological mechanisms. Hence it will not only help to study the
syllabus of pathology, but also to get baseline knowledge of its application in
other subject of pharmacy.

2. Objectives of the Subject : Upon completion of the subject student shall be able
to –
 a. describe the etiology and pathogenesis of the selected disease states;
 b. name the signs and symptoms of the diseases; and
 c. mention the complications of the diseases.

3. Course materials:
 Text books (Theory)
 a. Pathologic basis of disease by- Cotran, Kumar, Robbins
 b. Text book of Pathology- Harsh Mohan
 c. Text book of Pathology- Y.M. Bhinde

 Reference books (Theory)
 a. Clinical Pharmacy and Therapeutics; Second edition; Roger Walker;
 Churchill Livingstone publication

4. Detailed syllabus and lecture wise schedule:

Chapter

1. Basic principles of cell injury and Adaptation
 a) Causes, Pathogenesis and morphology of cell injury
 b) Abnormalities in lipoproteinaemia, glycogen infiltration and
glycogen infiltration and glycogen infiltration and glycogen storage
diseases

2. Inflammation
 a) Pathogenesis of acute inflammation, Chemical
 mediators in inflammation, Types of chronic inflammation
 b) Repairs of wounds in the skin, factors influencing healing of wounds

3. Diseases of Immunity
 a) Introduction to Tand B cells
 b) MHC proteins or transplantation
 antigens
c) Immune tolerance
 - Hypersensitivity
 Hypersensitivity type I, II, III, IV, Biological significance,
 Allergy due to food, chemicals and drugs
 - Autoimmunity
 Criteria for autoimmunity, Classifications of autoimmune
diseases in man, mechanism of autoimmunity, Transplantation
 and immunologic tolerance, allograft rejections,
- Transplantation antigens, mechanism of rejection of allograft.
 - Acquired immune deficiency syndrome (AIDS)
 - Amyloidosis

4 Cancer: differences between benign and malignant tumors, Histological diagnosis of malignancy, invasions and metastasis, patterns of spread, disturbances of growth of cells, classification of tumors, general biology of tumors, spread of malignant tumors, etiology and pathogenesis of cancer.

5 Types of shock, mechanisms, stages and management

6 Biological effects of radiation

7 Environmental and nutritional diseases
 i) Air pollution and smoking- SO2, NO, NO2, and CO
 ii) Protein calorie malnutrition, vitamins, obesity, pathogenesis of starvation.

8 Pathophysiology of common diseases
 a. Parkinsonism
 b. Schizophrenia
 c. Depression and mania
 d. Hypertension,
 e. Stroke (ischaemic and hemorrhage)
 f. Angina, CCF, Atherosclerosis, Myocardial infarction
 g. Diabetes Mellitus
 h. Peptic ulcer and inflammatory bowel diseases
 i. Cirrhosis and Alcoholic liver diseases
 j. Acute and chronic renal failure
 k. Asthma and chronic obstructive airway diseases

9 Infectious diseases:
 Sexually transmitted diseases (HIV, Syphilis, Gonorrhea), Urinary tract infections, Pneumonia, Typhoid, Tuberculosis, Leprosy, Malaria Dysentery (bacterial and amoebic), Hepatitis- Infective hepatitis.

4. Assignments:

Title of the Experiment
1. Chemical Mediators of inflammation
2. Drug Hypersensitivity
3. Cigarette smoking & its ill effects
4. Biological Effects of Radiation
5. Etiology and hazards of obesity
6. Complications of diabetes
7. Diagnosis of cancer
8. Disorders of vitamins
9. Methods in Pathology-Laboratory values of clinical significance
10. Pathophysiology of Dengue Hemorrhagic Fever (DHF)

Format of the assignment
1. Minimum & Maximum number of pages.
2. Reference(s) shall be included at the end.
3. Assignment can be a combined presentation at the end of the academic year
4. It shall be computer draft copy.
5. Name and signature of the student
6. Time allocated for presentation may be 8+2 Min.
2.2 PHARMACEUTICAL MICROBIOLOGY (THEORY)

Theory : 3 Hrs. /Week

1. Scope of the Subject: Microbiology has always been an essential component of pharmacy curriculum. This is because of the relevance of microbiology to pharmaceutical sciences and more specifically to pharmaceutical industry. Pharmaceutical biotechnology is the logical extension of pharmaceutical microbiology, which is expected to change the complete drug product scenario in the future. This course deals with the various aspects of microorganisms, its classification, morphology, laboratory cultivation identification and maintenance. Its also discusses with sterilization of pharmaceutical products, equipment, media etc. The course further discusses the immunological preparations, diseases its transmission, diagnosis, control and immunological tests.

2. Objectives of the Subject:
Upon completion of the subject student shall be able to –
 a. know the anatomy, identification, growth factors and sterilization of microorganisms;
 b. know the mode of transmission of disease causing microorganism, symptoms of disease, and treatment aspect;
 c. do estimation of RNA and DNA and there by identifying the source;
 d. do cultivation and identification of the microorganisms in the laboratory;
 e. do identification of diseases by performing the diagnostic tests; and
 f. appreciate the behavior of motility and behavioral characteristics of microorganisms.

Text books (Theory)

Reference books (Theory)
 b. Rawlins E.A. Bentley’s Text Book of Pharmaceutics, B ailliere Tindals 24-28 London 1988
 f. Pharmacopoeia of India, Govt of India, 1996.
3. Detailed syllabus and lecture wise schedule :

Title of the topic
1 Introduction to the science of microbiology. Major divisions of microbial world and Relationship among them.
2 Different methods of classification of microbes and study of Bacteria, Fungi, virus, Rickettsiae, Spirochetes.
3 Nutritional requirements, growth and cultivation of bacteria and virus. Study of different important media required for the growth of aerobic and anaerobic bacteria & fungi. Differential media, enriched media and selective media, maintenance of lab cultures.
4 Different methods used in isolation and identification of bacteria with emphasis to different staining techniques and biochemical reactions. Counting of bacteria -Total and Viable counting techniques.
5 Detailed study of different methods of sterilization including their merits and demerits. Sterilization methods for all pharmaceutical products. Detailed study of sterility testing of different pharmaceutical preparations. Brief information on Validation.
6 Disinfectants- Study of disinfectants, antisepsics, fungicidal and virucidal agents factors affecting their activation and mechanism of action. Evaluation of bactericidal, bacteriostatic, virucidal activities, evaluation of preservatives in pharmaceutical preparations.
7 Immunology- Immunity, Definition, Classification, General principles of natural immunity, Phagocytosis, acquired immunity(active and passive). Antigens, chemical nature of antigens structure and formation of Antibodies, Antigen-Antibody reactions. Bacterial exotoxins and endotoxins. Significance of toxoids in active immunity, Immunization programme, and importance of booster dose.
8 Diagnostic tests : Schick’s Test, Elisa test, Western Blot test, Southern Blot PCR Widal, QBC, Mantaux Peripheral smear. Study of malarial parasite.
9 Microbial culture sensitivity Testing: Interpretation of results Principles and methods of different microbiological assays, microbiological assay of Penicillin, Streptomycin and vitamin B₂ and B₁₂. Standardisation of vaccines and sera.
10 Study of infectious diseases: Typhoid, Tuberculosis, Malaria, Cholera, Hepatitis, Meningitis, Syphilis & Gonorrhea and HIV.

2.2 PHARMACEUTICAL MICROBIOLOGY (PRACTICAL)

Practical : 3 Hrs./Week

Title of the Experiment:
1 Study of apparatus used in experimental microbiology*.
2 Sterilisation of glass ware’s. Preparation of media and sterilisation.*
3 Staining techniques – Simple staining ; Gram’s staining ; Negative staining**
4 Study of motility characters*.
5 Enumeration of micro-organisms (Total and Viable)*
6 Study of the methods of isolation of pure culture.*
7 Bio chemical testing for the identification of micro*-organisms.
8 Cultural sensitivity testing for some micro-organisms.*
9 Sterility testing for powders and liquids.*
10 Determination of minimum inhibitory concentration.*
11 Microbiological assay of antibiotics by cup plate method.*
12 Microbiological assay of vitamins by Turbidometric method**
13 Determination of RWC.**
14 Diagnostic tests for some common diseases, Widal, malarial parasite.**

* Indicate minor experiment & ** indicate major experiment

Assignments:
1. Visit to some pathological laboratories & study the activities and equipment/instruments used and reporting the same.
2. Visit to milk dairies (Pasturization) and microbial laboratories (other sterilization methods) & study the activities and equipment/instruments used and reporting the same.
3. Library assignments
 a. Report of recent microbial techniques developed in diagnosing some common diseases.
 b. Latest advancement developed in identifying, cultivating & handling of microorganisms.

Format of the assignment:
1. Minimum & Maximum number of pages.
2. It shall be computer draft copy.
3. Reference(s) shall be included at the end.
4. Name and signature of the student.
5. Assignment can be a combined presentation at the end of the academic year.
6. Time allocated for presentation may be 8+2 Min.

Scheme of Practical Examination:

<table>
<thead>
<tr>
<th></th>
<th>Sessionals</th>
<th>Annual</th>
</tr>
</thead>
<tbody>
<tr>
<td>Synopsis</td>
<td>05</td>
<td>15</td>
</tr>
<tr>
<td>Major Experiment</td>
<td>10</td>
<td>25</td>
</tr>
<tr>
<td>Minor Experiment</td>
<td>03</td>
<td>15</td>
</tr>
<tr>
<td>Viva</td>
<td>02</td>
<td>15</td>
</tr>
<tr>
<td>Max Marks</td>
<td>20</td>
<td>70</td>
</tr>
<tr>
<td>Duration</td>
<td>03hrs</td>
<td>04hrs</td>
</tr>
</tbody>
</table>

Note: Total sessional marks is 30 (20 for practical sessional plus 10 marks for regularity, promptness, viva-voce and record maintenance).
2.3 PHARMACOGNOSY & PHYTOPHARMACEUTICALS (THEORY)

Theory : 3 Hrs. /Week

1. **Scope and objectives:** This subject has been introduced for the pharmacy course in order to make the student aware of medicinal uses of various naturally occurring drugs its history, sources, distribution, method of cultivation, active constituents, medicinal uses, identification tests, preservation methods, substitutes and adulterants.

2. **Upon completion of the course student shall be able to:**
 a. understand the basic principles of cultivation, collection and storage of crude drugs;
 b. know the source, active constituents and uses of crude drugs; and
 c. appreciate the applications of primary and secondary metabolites of the plant.

3. **Course materials:**

 Text books

 Reference books
 a. Pharmacognosy by Brady &Tyler.E.
 b. Pharmacognosy by T.E.Wallis.
 c. Pharmacognosy by C.S. Shah & Qadery.
 d. Pharmacognosy by M.A. Iyengar.

4. **Lecture wise programme:**

 Topics
 1. Introduction.
 2. Definition, history and scope of Pharmacognosy.
 3. Classification of crude drugs.
 4. Cultivation, collection, processing and storage of crude drugs.
 5. Detailed method of cultivation of crude drugs.
 6. Study of cell wall constituents and cell inclusions.
 7. Microscopical and powder Microscopical study of crude drugs.
 8. Study of natural pesticides.
 9. Detailed study of various cell constituents.
 11. Detailed study carbohydrates containing drugs.(11 drugs)
 12. Definition sources, method extraction, chemistry and method of analysis of lipids.
 15. Study of plants fibers used in surgical dressings and related products.
 16. Different methods of adulteration of crude drugs.
2.3 PHARMACOGNOSY & PHYTOPHARMACEUTICALS
(PRACTICAL)

Practical : 3 Hrs./Week

General Requirements: Laboratory Napkin, Observation Book 150 pages Zero brush, Needle, Blade, Match box.

List of experiments:
1. Introduction of Pharmacognosy laboratory and experiments.
2. Study of cell wall constituents and cell inclusions.
3. Macro, powder and microscopic study of Datura.
4. Macro, powder and microscopic study of Senna.
5. Macro, powder and microscopic study of Cassia.cinnamon.
6. Macro, powder and microscopic study of Cinchona.
7. Macro, powder and microscopic study of Ephedra.
8. Macro, powder and microscopic study of Quassia.
9. Macro, powder and microscopic study of Clove
10. Macro, powder and microscopic study of Fennel.
11. Macro, powder and microscopic study of Coriander.
12. Macro, powder and microscopic study of Isapgoil.
13. Macro, powder and microscopic study of Nux vomica.
14. Macro, powder and microscopic study of Rauwolfia.
15. Macro, powder and microscopic study of Liquorice.
16. Macro, powder and microscopic study of Ginger.
17. Macro, powder and microscopic study of Podophyllum.
18. Determination of Iodine value.
19. Determination of Saponification value and unsaponifiable matter.
20. Determination of ester value.
21. Determination of Acid value.
22. Chemical tests for Acacia.
23. Chemical tests for Tragacanth.
24. Chemical tests for Agar.
25. Chemical tests for Starch.
26. Chemical tests for Lipids,(castor oil,sesame oil, shark liver oil,bees wax)
27. Chemical tests for Gelatin.

Scheme of Practical Examination:

<table>
<thead>
<tr>
<th></th>
<th>Sessionals</th>
<th>Annual</th>
</tr>
</thead>
<tbody>
<tr>
<td>Identification</td>
<td>04</td>
<td>10</td>
</tr>
<tr>
<td>Synopsis</td>
<td>04</td>
<td>10</td>
</tr>
<tr>
<td>Major Experiment</td>
<td>07</td>
<td>20</td>
</tr>
<tr>
<td>Minor Experiment</td>
<td>03</td>
<td>15</td>
</tr>
<tr>
<td>Viva</td>
<td>02</td>
<td>15</td>
</tr>
<tr>
<td>Max Marks</td>
<td>20</td>
<td>70</td>
</tr>
<tr>
<td>Duration</td>
<td>03hrs</td>
<td>04hrs</td>
</tr>
</tbody>
</table>

Note: Total sessional marks is 30 (20 for practical sessional plus 10 marks for regularity, promptness, viva-voce and record maintenance.)
2.4 PHARMACOLOGY – I (THEORY)

Theory : 3 Hrs. /Week

1. **Scope of the Subject:** This subject will provide an opportunity for the student to learn about the drug with regard to classification, pharmacodynamic and pharmacokinetic aspects, adverse effects, uses, dose, route of administration, precautions, contraindications and interaction with other drugs. In this subject, apart from general pharmacology, drugs acting on autonomic nervous system, cardiovascular system, central nervous system, blood and blood forming agents and renal system will be taught. In addition to theoretical knowledge, the basic practical knowledge relevant to therapeutics will be imparted.

2. **Objectives of the Subject:** Upon completion of the subject student shall be able to (Know, do, appreciate) –
 a. understand the pharmacological aspects of drugs falling under the above mentioned chapters;
 b. handle and carry out the animal experiments;
 c. appreciate the importance of pharmacology subject as a basis of therapeutics; and d. correlate and apply the knowledge therapeutically.

Text books (Theory) (Author, Title, Edition, Publication Place, Publisher, Year of Publication)

Reference books (Theory)(Author, Title, Edition, Publication Place, Publisher, Publication Year)

3. **Detailed syllabus and lecture wise schedule : Title of the topic**

 1. **General Pharmacology**
 a) Introduction, definitions and scope of pharmacology
 b) Routes of administration of drugs
 c) Pharmacokinetics (absorption, distribution, metabolism and excretion)
 d) Pharmacodynamics
 e) Factors modifying drug effects
 f) Drug toxicity - Acute, sub- acute and chronic toxicity.
g) Pre-clinical evaluations
h) Drug interactions

Note: The term Pharmacology used here refers to the classification, mechanism of action, pharmacokinetics, pharmacodynamics, adverse effects, contraindications, Therapeutic uses, interactions and dose and route of administration.

2. Pharmacology of drugs acting on ANS
 a) Adrenergic and antiadrenergic drugs
 b) Cholinergic and anticholinergic drugs
 c) Neuromuscular blockers
 d) Mydriatics and miotics
 e) Drugs used in myasthenia gravis
 f) Drugs used in Parkinsonism

3. Pharmacology of drugs acting on cardiovascular system
 a) Antihypertensives
 b) Anti-anginal drugs
 c) Anti-arrhythmic drugs
 d) Drugs used for therapy of Congestive Heart Failure
 e) Drugs used for hyperlipidaemias

4. Pharmacology of drugs acting on Central Nervous System
 a) General anesthetics
 b) Sedatives and hypnotics
 c) Anticonvulsants
 d) Analgesic and anti-inflammatory agents
 e) Psychotropic drugs
 f) Alcohol and methyl alcohol
 g) CNS stimulants and cognition enhancers
 h) Pharmacology of local anaesthetics

5. Pharmacology of Drugs acting on Respiratory tract
 a) Bronchodilators
 b) Mucolytics
 c) Expectorants
 d) Antitussives
 e) Nasal Decongestants

6. Pharmacology of Hormones and Hormone antagonists
 a) Thyroid and Antithyroid drugs
 b) Insulin, Insulin analogues and oral hypoglycemic agents
 c) Sex hormones and oral contraceptives
 d) Oxytocin and other stimulants and relaxants

7. Pharmacology of autacoids and their antagonists
 a) Histamines and Antihistaminics
 b) 5-Hydroxytryptamine and its antagonists
 c) Lipid derived autacoids and platelet activating factor
2.5 COMMUNITY PHARMACY (THEORY)

Theory : 2 Hrs. /Week

1. **Scope:** In the changing scenario of pharmacy practice in India, Community Pharmacists are expected to offer various pharmaceutical care services. In order to meet this demand, students will be learning various skills such as dispensing of drugs, responding to minor ailments by providing suitable safe medication, patient counselling, health screening services for improved patient care in the community set up.

2. **Objectives:** Upon completion of the course, the student shall be able to –
 a. know pharmaceutical care services;
 b. know the business and professional practice management skills in community pharmacies;
 c. do patient counselling & provide health screening services to public in community pharmacy;
 d. respond to minor ailments and provide appropriate medication;
 e. show empathy and sympathy to patients; and
 f. appreciate the concept of Rational drug therapy.

Text Books:
- Health Education and Community Pharmacy by N.S.Parmar.
- WHO consultative group report.

Reference books:

Special requirements:
1. Either the college is having model community pharmacy (meeting the schedule N requirement) or sign MoU with at least 4-5 community pharmacies nearby to the college for training the students on dispensing and counselling activities.
2. Special equipments like B.P apparatus, Glucometer, Peak flow meter, and apparatus for cholesterol estimation.

3. **Lecture wise programme:**

 Topics
 1. **Definition, scope, of community pharmacy**
 Roles and responsibilities of Community pharmacist
 2. **Community Pharmacy Management**
 a) Selection of site, Space layout, and design
 b) Staff, Materials- coding, stocking
 c) Legal requirements
 d) Maintenance of various registers
 e) Use of Computers: Business and health care soft wares
 4. **Inventory control in community pharmacy**
 Definition, various methods of Inventory Control
ABC, VED, EOQ, Lead time, safety stock

5 Pharmaceutical care
Definition and Principles of Pharmaceutical care.

6 Patient counselling
Definition, outcomes, various stages, barriers, Strategies to overcome barriers
Patient information leaflets- content, design, & layouts, advisory labels

7 Patient medication adherence
Definition, Factors affecting medication adherence, role of pharmacist in improving the adherence.

8 Health screening services
Definition, importance, methods for screening
Blood pressure/ blood sugar/ lung function
and Cholesterol testing

9 OTC Medication- Definition, OTC medication list & Counselling

10 Health Education
WHO Definition of health, and health promotion, care for children, pregnant & breast
feeding women, and geriatric patients.
Commonly occurring Communicable Diseases, causative agents,
Clinical presentations and prevention of communicable diseases – Tuberculosis,
Hepatitis, Typhoid, Amoebiasis, Malaria, Leprosy,
Syphilis, Gonorrhea and AIDS
Balance diet, and treatment & prevention of deficiency disorders
Family planning – role of pharmacist

11 Responding to symptoms of minor ailments
Relevant pathophysiology, common drug therapy to,
Pain, GI disturbances (Nausea, Vomiting, Dyspepsia, diarrhea, constipation), Pyrexia,
Ophthalmic symptoms, worms infestations.

12 Essential Drugs concept and Rational Drug Therapy
Role of community pharmacist

13 Code of ethics for community pharmacists
2.6 PHARMACOTHERAPEUTICS - I (THEORY)

Theory : 3 Hrs. /Week

1. **Scope of the Subject:** This course is designed to impart knowledge and skills necessary for contribution to quality use of medicines. Chapters dealt cover briefly pathophysiology and mostly therapeutics of various diseases. This will enable the student to understand the pathophysiology of common diseases and their management.

2. **Objectives:** At completion of this subject it is expected that students will be able to understand –
 a. the pathophysiology of selected disease states and the rationale for drug therapy;
 b. the therapeutic approach to management of these diseases;
 c. the controversies in drug therapy;
 d. the importance of preparation of individualised therapeutic plans based on diagnosis;
 e. needs to identify the patient-specific parameters relevant in initiating drug therapy, and monitoring therapy (including alternatives, time-course of clinical and laboratory indices of therapeutic response and adverse effects);
 f. describe the pathophysiology of selected disease states and explain the rationale for drug therapy;
 g. summarise the therapeutic approach to management of these diseases including reference to the latest available evidence;
 h. discuss the controversies in drug therapy;
 i. discuss the preparation of individualised therapeutic plans based on diagnosis; and
 j. identify the patient-specific parameters relevant in initiating drug therapy, and monitoring therapy (including alternatives, time-course of clinical and laboratory indices of therapeutic response and adverse effects).

Text Books

Reference Books

a. Pathologic basis of disease - Robins SL, W.B.Saunders publication.
b. Pathology and therapeutics for Pharmacists: A Basis for Clinical Pharmacy Practice - Green and Harris, Chapman and Hall publication.
d. Applied Therapeutics:The clinical Use of Drugs. Lloyd Young and Koda-Kimble MA
f. Relevant review articles from recent medical and pharmaceutical literature.
3. Detailed syllabus and lecture wise schedule:

Etiopathogenesis and pharmacotherapy of diseases associated with following systems/ diseases

Title of the topic

1 Cardiovascular system: Hypertension, Congestive cardiac failure, Angina Pectoris, Myocardial infarction, Hyperlipidaemias, Electrophysiology of heart and Arrhythmias

2 Respiratory system: Introduction to Pulmonary function test, Asthma, Chronic obstructive airways disease, Drug induced pulmonary diseases

Endocrine system: Diabetes, Thyroid diseases, Oral contraceptives, Hormone replacement therapy, Osteoporosis

3 General prescribing guidelines for
 a. Paediatric patients
 b. Geriatric patients
 c. Pregnancy and breast feeding

4 Ophthalmology: Glaucoma, Conjunctivitis- viral & bacterial

5 Introduction to rational drug use
 Definition, Role of pharmacist Essential drug concept Rational drug formulations

2.6 PHARMACOTHERAPEUTICS - I (PRACTICAL)

Practical: 3 Hrs./Week

Practicals:
Hospital postings in various departments designed to complement the lectures by providing practical clinical discussion; attending ward rounds; follow up the progress and changes made in drug therapy in allotted patients; case presentation upon discharge. Students are required to maintain a record of cases presented and the same should be submitted at the end of the course for evaluation. A minimum of 20 cases should be presented and recorded covering most common diseases.

Assignments:
Students are required to submit written assignments on the topics given to them. Topics allotted should cover recent developments in drug therapy of various diseases. A minimum of THREE assignments [1500 – 2000 words] should be submitted for evaluation.
Format of the assignment:
1. Minimum & Maximum number of pages.
2. Reference(s) shall be included at the end.
3. Assignment can be a combined presentation at the end of the academic year.
4. It shall be computer draft copy.
5. Name and signature of the student.
6. Time allocated for presentation may be 8+2 Min.

Scheme of Practical Examination:

<table>
<thead>
<tr>
<th></th>
<th>Sessionals</th>
<th>Annual</th>
</tr>
</thead>
<tbody>
<tr>
<td>Synopsis</td>
<td>05</td>
<td>15</td>
</tr>
<tr>
<td>Major Experiment</td>
<td>10</td>
<td>25</td>
</tr>
<tr>
<td>Minor Experiment</td>
<td>03</td>
<td>15</td>
</tr>
<tr>
<td>Viva</td>
<td>02</td>
<td>15</td>
</tr>
<tr>
<td>Max Marks</td>
<td>20</td>
<td>70</td>
</tr>
<tr>
<td>Duration</td>
<td>03hrs</td>
<td>04hrs</td>
</tr>
</tbody>
</table>

Note: Total sessional marks is 30 (20 for practical sessional plus 10 marks for regularity, promptness, viva-voce and record maintenance).
Third Year

3.1 PHARMACOLOGY – II (THEORY)

Theory : 3 Hrs. /Week

1. **Scope of the Subject**: This subject will provide an opportunity for the student to learn about the drug with regard to classification, pharmacodynamic and pharmacokinetic aspects, adverse effects, uses, dose, route of administration, precautions, contraindications and interaction with other drugs. In this subject, drugs acting on autacoids, respiratory system, GIT, immune system and hormones, and pharmacology of autacoids and hormones will be concentrated. In addition, pharmacology of chemotherapeutic agents, vitamins, essential minerals and principles of toxicology are also taught. In addition to theoretical knowledge, the basic practical knowledge relevant to therapeutics will be imparted.

2. **Objectives of the Subject Upon completion of the subject student shall be able to:**
 a. understand the pharmacological aspects of drugs falling under the above mentioned chapters,
 b. carry out the animal experiments confidently,
 c. appreciate the importance of pharmacology subject as a basis of therapeutics, and
 d. correlate and apply the knowledge therapeutically.

Text books (Theory)

Reference books (Theory)

Text books (Practical)
Reference books (Practical):

3. Detailed syllabus and lecture wise schedule:

Title of the topic

1. **Pharmacology of Drugs acting on Blood and blood forming agents**
 a) Anticoagulants
 b) Thrombolytics and antiplatelet agents
 c) Haemopoietics and plasma expanders

2. **Pharmacology of drugs acting on Renal System**
 a) Diuretics
 b) Antidiuretics

3. **Chemotherapy**
 a) Introduction
 b) Sulfonamides and co-trimoxazole
 c) Penicillins and Cephalosporins
 d) Tetracyclins and Chloramphenicol
 e) Macrolides, Aminoglycosides, Polyene & Polypeptide antibiotics
 f) Quinolines and Fluroquinolines
 g) Antifungal antibiotics
 h) Antiviral agents
 i) Chemotherapy of tuberculosis and leprosy
 j) Chemotherapy of Malaria
 k) Chemotherapy of protozoal infections (amoebiasis, Giardiasis)
 l) Pharmacology of Anthelmintic drugs
 m) Chemotherapy of cancer (Neoplasms)

4. **Immunopharmacology**
 Pharmacology of immunosuppressants and stimulants

5. **Principles of Animal toxicology**
 Acute, sub acute and chronic toxicity
6. The dynamic cell: The structures and functions of the components of the cell
 a) Cell and macromolecules: Cellular classification, subcellular organelles, macromolecules, large macromolecular assemblies
 b) Chromosome structure: Pro and eukaryotic chromosome structures, chromatin structure, genome complexity, the flow of genetic information.
 c) DNA replication: General, bacterial and eukaryotic DNA replication.
 d) The cell cycle: Restriction point, cell cycle regulators and modifiers.
 e) Cell signaling: Communication between cells and their environment, ion-channels, signal transduction pathways (MAP kinase, P38 kinase, JNK, Ras and PI3-kinase pathways, biosensors.

The Gene: Genome structure and function:
 a) Gene structure: Organization and elucidation of genetic code.
 b) Gene expression: Expression systems (pro and eukaryotic), genetic elements that control gene expression (nucleosomes, histones, acetylation, HDACS, DNA binding protein families.
 c) Transcription and Transcription factors: Basic principles of transcription in pro and eukaryotes. Transcription factors that regulate transcription in pro and eukaryotes.

RNA processing: rRNA, tRNA and mRNA processing.
Protein synthesis: Mechanisms of protein synthesis, initiation in eukaryotes, translation control and post-translation events
Altered gene functions: Mutations, deletions, amplifications, LOH, traslocations, trinucleotide repeats and other genetic abnormalities.
Oncogenes and tumor suppressor genes.
The gene sequencing, mapping and cloning of human disease genes.
Introduction to gene therapy and targeting.
Recombinant DNA technology: principles. Processes (gene transfer technology) and applications

Books:
5 Pharmaceutical Biotechnology, by Crommelin, DJA and Sindelar RD (1997)
3.1 PHARMACOLOGY – II (PRACTICAL)

Practical : 3 Hrs./Week

List of Experiments:
2. Study of physiological salt solutions used in experimental pharmacology.
3. Study of laboratory appliances used in experimental pharmacology.
4. Study of use of anesthetics in laboratory animals.
5. To record the dose response curve of Ach using isolated ileum/rectus abdominis muscle preparation.
6. To carry out bioassay of Ach using isolated ileum/rectus abdominis muscle preparation by interpolation method.
7. To carry out bioassay of Ach using isolated ileum/rectus abdominis muscle preparation by three point method.
8. To record the dose response curve of Histamine using isolated guinea-pig ileum preparation.
10. To carry out bioassay of Histamine using isolated guinea-pig ileum preparation by interpolation method.
11. To carry out bioassay of Histamine using guinea-pig ileum preparation by three point method.
12. To study the routes of administration of drugs in animals (Rats, Mice, Rabbits).
13. Study of theory, principle, procedure involved and interpretation of given results for the following experiments:
 a) Analgesic property of drug using analgesiometer.
 b) Antiinflammatory effect of drugs using rat-paw edema method.
 c) Anticonvulsant activity of drugs using maximal electroshock and pentylene tetrazole methods.
 d) Antidepressant activity of drugs using pole climbing apparatus and pentobarbitone induced sleeping time methods.
 e) Locomotor activity evaluation of drugs using actophotometer and rotorod.
 f) Cardiotonic activity of drugs using isolated frog heart and mammalian heart preparations.

Note: “Experiments to be performed using Software, wherever required.”

Scheme of Practical Examination:

<table>
<thead>
<tr>
<th></th>
<th>Sessionals</th>
<th>Annual</th>
</tr>
</thead>
<tbody>
<tr>
<td>Identification</td>
<td>02</td>
<td>10</td>
</tr>
<tr>
<td>Synopsis</td>
<td>04</td>
<td>10</td>
</tr>
<tr>
<td>Major Experiment (Bioassay)</td>
<td>08</td>
<td>30</td>
</tr>
<tr>
<td>Minor Experiment (Interpretation of given Graph or simulated experiment)</td>
<td>04</td>
<td>10</td>
</tr>
<tr>
<td>Viva</td>
<td>02</td>
<td>10</td>
</tr>
<tr>
<td>Max Marks</td>
<td>20</td>
<td>70</td>
</tr>
<tr>
<td>Duration</td>
<td>3hrs</td>
<td>4hrs</td>
</tr>
</tbody>
</table>

Note: Total sessional marks is 30 (20 for practical sessional plus 10 marks for regularity, promptness, viva-voce and record maintenance).
3.2 PHARMACEUTICAL ANALYSIS (THEORY)

Theory : 3 Hrs. /Week

1. Quality Assurance:
 a. Introduction, sources of quality variation, control of quality variation.
 b. Concept of statistical quality control.
 c. Validation methods- quality of equipment, validation of equipment and validation of analytical instruments and calibration.
 d. GLP, ISO 9000.
 e. Total quality management, quality review and documentation.
 f. ICH- international conference for harmonization-guidelines.
 g. Regulatory control.

2. Chromatography:
 Introduction, history, classification, separation techniques, choice of methods. The following techniques be discussed with relevant examples of pharmaceutical products involving principles and techniques of separation of drugs from excipients.
 b. TLC: Introduction, principle, techniques, Rf value and applications.
 c. PC: Introduction, principle, types of paper chromatography, preparation techniques, development techniques, applications.
 d. Ion-exchange chromatography: Introduction, principles, types of ion exchange synthetic resins, physical properties, factors affecting ion exchange, methodology and applications.
 e. HPLC: Introduction, theory, instrumentation, and applications.
 f. HPTLC: Introduction, theory, instrumentation, and applications.
 h. Electrophoresis: Principles of separation, equipment for paper and gel electrophoresis, and application.
 i. Gel filtration and affinity chromatography: Introduction, technique, applications.

3. Electrometric Methods:
 Theoretical aspects, instrumentation, interpretation of data/spectra and analytical applications be discussed on the following topics.
 a. Potentiometry: Electrical potential, electrochemical cell, reference electrodes, indicator electrodes, measurement of potential and pH, construction and
working of electrodes, Potentiometric titrations, methods of detecting end point, Karl Fischer titration.

b. **Conductometry:** Introduction, conductivity cell, conductometric titrations and applications.

c. **Polarography:** Instrumentation, DME, residual current, diffusion current and limiting current, polarographic wave, Ilkovic’s equation, Effect of oxygen on polarographic wave, Polarographic maxima and suppressors and applications.

d. **Amperometric Titrations:** Introduction, types of electrodes used, reference and indicator electrode, instrumentation, titration procedure, advantages and disadvantages of Amperometry over potentiometry. Pharma applications.

4. **Spectroscopy:**

Theoretical aspects, instrumentation, elements of interpretation of data/spectra and application of analytical techniques be discussed on:

a. **Absorption Spectroscopy:**

- Theory of electronic, atomic and molecular spectra. Fundamental laws of photometry, Beer-Lambert’s Law, application and its deviation, limitation of Beer law, application of the law to single and multiple component analysis, measurement of equilibrium constant and rate constant by spectroscopy. Spectra of isolated chromophores, auxochromes, batho-chromic shift, hypochromic shift, hyperchromic and hypochromic effect, effect of solvent on absorption spectra, molecular structure and infrared spectra.

- **Fluorimetric Analysis:** Theory, luminescence, factors affecting fluorescence, quenching. Instrumentation, Applications, fluorescent indicators, study of pharmaceutically important compounds estimated by fluorimetry.

b. **Flame Photometry:** Theory, nebulisation, flame and flame temperature, interferences, flame spectrometric techniques and instrumentation and pharmaceutical applications.

c. **Atomic Absorption Spectrometry:** Introduction, Theory, types of electrodes, instrumentation and applications.

d. **Atomic Emission Spectroscopy:** Spectroscopic sources, atomic emission spectrometers, photographic and photoelectric detection.
e. **NMR & ESR (introduction only)**: Introduction, theoretical aspects and applications.

f. **Mass Spectroscopy: (Introduction only)** – Fragmentation, types of ions produced mass spectrum and applications.

g. **Polarimetry: (Introduction only)** – Introduction to optical rotatory dispersion, circular dichroism, polarimeter.

h. **X-RAY Diffraction: (Introduction only)** – Theory, reciprocal lattice concept, diffraction patterns and applications.

i. **Thermal Analysis**: Introduction, instrumentation, applications, and DSC and DTA.

3.2 PHARMACEUTICAL ANALYSIS (PRACTICAL)

Practical : 3 Hrs./Week

List of Experiments:
2. Separation and identification of Sulpha drugs by TLC technique.
3. Effect of pH and solvent on the UV spectrum of given compound.
4. Comparison of the UV spectrum of a compound with that of its derivatives.
5. Determination of dissociation constant of indicators using UV-Visible spectroscopy.
6. Conductometric titration of mixture of acids with a strong base.
7. Potentiometric titration of a acid with a strong base.
8. Estimation of drugs by Fluorimetric technique.
9. Study of quenching effect in fluorimetry.
11. Simultaneous estimation of two drugs present in given formulation by UV method.
12. Assay of Salicylic Acid by colourimetry.
17. Comparison of the IR spectrum of a compound with that of its derivatives.
18. Demonstration of HPLC.
19. Demonstration of HPTLC.
20. Demonstration of GC-MS.
21. Demonstration of DSC.
22. Interpretation of NMR spectra of any one compound.
Reference Books:
5. Instrumental Analysis by Willard and Merritt, EWP, East West Press Ltd., Delhi/Madras.
6. Pharm Analysis by Skoog and West, Sounders Manipal College Publishing.
14. TLC by Stahl, Spring Verlay.
18. BPC- Dept. of Health, U.K. for HMSO.
19. USP - Mack Publishing Co., Easton, PA.

Scheme of Practical Examination:

<table>
<thead>
<tr>
<th></th>
<th>Sessionals</th>
<th>Annual</th>
</tr>
</thead>
<tbody>
<tr>
<td>Synopsis</td>
<td>05</td>
<td>15</td>
</tr>
<tr>
<td>Major Experiment</td>
<td>10</td>
<td>25</td>
</tr>
<tr>
<td>Minor Experiment</td>
<td>03</td>
<td>15</td>
</tr>
<tr>
<td>Viva</td>
<td>02</td>
<td>15</td>
</tr>
<tr>
<td>Max Marks</td>
<td>20</td>
<td>70</td>
</tr>
<tr>
<td>Duration</td>
<td>03hrs</td>
<td>04hrs</td>
</tr>
</tbody>
</table>

Note: Total sessional marks is 30 (20 for practical sessional plus 10 marks for regularity, promptness, viva-voce and record maintenance).
3.3 PHARMACOTHERAPEUTICS – II (THEORY)

Theory : 3 Hrs. /Week

1. **Scope of the Subject:** This course is designed to impart knowledge and skills necessary for contribution to quality use of medicines. Chapters dealt cover briefly pathophysiology and mostly therapeutics of various diseases. This will enable the student to understand the pathophysiology of common diseases and their management.

2. **Objectives of the Subject Upon completion of the subject student shall be able to**
 - a. know the pathophysiology of selected disease states and the rationale for drug therapy
 - b. know the therapeutic approach to management of these diseases;
 - c. know the controversies in drug therapy;
 - d. know the importance of preparation of individualised therapeutic plans based on diagnosis; and
 - e. appreciate the needs to identify the patient-specific parameters relevant in initiating drug therapy, and monitoring therapy (including alternatives, time-course of clinical and laboratory indices of therapeutic response and adverse effects).

Text books (Theory)
Clinical Pharmacy and Therapeutics - Roger and Walker, Churchill Livingstone publication

Reference books (Theory)
b. Clinical Pharmacy and Therapeutics - Eric T. Herfindal, Williams and Wilkins Publication
c. Applied Therapeutics: The clinical Use of Drugs. Lloyd Young and Koda-Kimble MA

3. **Detailed syllabus and lecture wise schedule:**
Etiopathogenesis and pharmacotherapy of diseases associated with following systems / diseases –

Title of the topic
1. **Infectious disease:** Guidelines for the rational use of antibiotics and surgical Prophylaxis, Tuberculosis, Meningitis, Respiratory tract infections, Gastroenteritis, Endocarditis, Septicemia, Urinary tract infections, Protozoal infection - Malaria, HIV & Opportunistic infections, Fungal infections, Viral infections, Gonorrhea and Syphilis
2 **Musculoskeletal disorders**
 Rheumatoid arthritis, Osteoarthritis,Gout, Spondylitis, Systemic lupus erythematosus.

3 **Renal system**
 Acute Renal Failure, Chronic Renal Failure, Renal Dialysis, Drug induced renal disorders

4 **Oncology:** Basic principles of Cancer therapy, General introduction to
cancer chemotherapeutic agents, Chemotherapy of breast cancer, leukemia.
Management of chemotherapy nausea and emesis

5 Dermatology: Psoriasis, Scabies, Eczema, Impetigo

3.3 PHARMACOTHERAPEUTICS – II (PRACTICAL)

Practical : 3 Hrs./Week

Practicals:
Hospital postings in various departments designed to complement the lectures by providing practical clinical discussion; attending ward rounds; follow up the progress and changes made in drug therapy in allotted patients; case presentation upon discharge. Students are required to maintain a record of cases presented and the same should be submitted at the end of the course for evaluation.

The student shall be trained to understand the principle and practice involved in selection of drug therapy including clinical discussion.
A minimum of 20 cases should be presented and recorded covering most common diseases.

Assignments:
Students are required to submit written assignments on the topics given to them. Topics allotted should cover recent developments in drug therapy of various diseases. A minimum of THREE assignments [1500 – 2000 words] should be submitted for evaluation.

Format of the assignment:
1. Minimum & Maximum number of pages.
2. Reference(s) shall be included at the end.
3. Assignment can be a combined presentation at the end of the academic year.
4. It shall be computer draft copy.
5. Name and signature of the student.
6. Time allocated for presentation may be 8+2 Min.

Scheme of Practical Examination:

<table>
<thead>
<tr>
<th></th>
<th>Sessionals</th>
<th>Annual</th>
</tr>
</thead>
<tbody>
<tr>
<td>Synopsis</td>
<td>05</td>
<td>15</td>
</tr>
<tr>
<td>Major Experiment</td>
<td>10</td>
<td>25</td>
</tr>
<tr>
<td>Minor Experiment</td>
<td>03</td>
<td>15</td>
</tr>
<tr>
<td>Viva</td>
<td>02</td>
<td>15</td>
</tr>
<tr>
<td>Max Marks</td>
<td>20</td>
<td>70</td>
</tr>
<tr>
<td>Duration</td>
<td>03hrs</td>
<td>04hrs</td>
</tr>
</tbody>
</table>

Note: Total sessional marks is 30 (20 for practical sessional plus 10 marks for regularity, promptness, viva-voce and record maintenance).
3.4 PHARMACEUTICAL JURISPRUDENCE (THEORY)

Theory : 2 Hrs. /Week

1. **Scope of the Subject:** (4-6 lines): This course exposes the student to several important legislations related to the profession of pharmacy in India. The Drugs and Cosmetics Act, along with its amendments are the core of this course. Other acts, which are covered, include the Pharmacy Act, dangerous drugs, medicinal and toilet preparation Act etc. Besides this the new drug policy, professional ethics, DPCO, patent and design Act will be discussed.

2. **Objectives of the Subject:** Upon completion of the subject student shall be able to (Know, do, and appreciate) –
 a. practice the Professional ethics;
 b. understand the various concepts of the pharmaceutical legislation in India;
 c. know the various parameters in the Drug and Cosmetic Act and rules;
 d. know the Drug policy, DPCO, Patent and design act; understand the labeling requirements and packaging guidelines for drugs and cosmetics;
 e. be able to understand the concepts of Dangerous Drugs Act, Pharmacy Act and Excise duties Act; and
 f. other laws as prescribed by the Pharmacy Council of India from time to time including International Laws.

Text books (Theory)

Reference books (Theory)
 c. Reports of the Pharmaceutical enquiry Committee
 d. I.D.M.A., Mumbai. DPCO 1995
 e. Various reports of Amendments.

3. Detailed syllabus and lecture wise schedule:
 Title of the topic
 1. **Pharmaceutical Legislations** – A brief review.
 2. Principle and Significance of professional ethics. Critical study of the code of pharmaceutical ethics drafted by PCI.
 3. **Drugs and Cosmetics Act, 1940,and its rules 1945.**
4. **Pharmacy Act –1948.**
 Drugs Act along with Latest Amendments.
 Objectives Legal Definitions, General Study, Constitution and Functions of State & Central Council, Registration & Procedure, ER.

5. **Medicinal and Toilet Preparation Act –1955.**
 Objectives, Legal Definitions, Licensing, Bonded and Non Bonded Laboratory, Ware Housing, Manufacture of Ayurvedic, Homeopathic, Patent & Proprietary Preparations.

7. **Study of Salient Features of Drugs and magic remedies Act and its rules.**

8. **Study of essential Commodities Act Relevant to drugs price control Order.**

9. **Drug Price control Order & National Drug Policy (Current).**

10. **Prevention Of Cruelty to animals Act-1960.**

11. **Patents & design Act-1970.**

12. **Brief study of prescription and Non-prescription Products.**

4. **Assignments:**

 Format of the assignment
 1. Minimum & Maximum number of pages
 2. It shall be a computer draft copy
 3. Reference(s) shall be included at the end.
 4. Name and signature of the student
 5. Assignment can be a combined presentation at the end of the academic year.
 6. Time allocated for presentation may be 8+2 Min

 Case studies relating to
 1. Drugs and Cosmetics Act and rules along with its amendments, Dangerous Drugs Act, Medicinal and Toilet preparation Act, New Drug Policy, Professional Ethics, Drugs (Price control) Order, Patent and Design Act.
 3. Medical and surgical accessories.
 4. Diagnostic aids and appliances available in the market.
3.5 MEDICINAL CHEMISTRY (THEORY)

Theory : 3 Hrs. /Week

1. Modern concept of rational drug design: A brief introduction to Quantitative Structure Activity Relationship (QSAR), prodrug, combinatorial chemistry and computer aided drug design (CADD) and concept of antisense molecules.

A study of the development of the following classes of drugs including SAR, mechanism of action, synthesis of important compounds, chemical nomenclature, brand names of important marketed products and their side effects.

2. Anti-infective agents
 a) Local anti-infective agents
 b) Preservatives
 c) Antifungal agents
 d) Urinary tract anti-infectives
 e) Antitubercular agents
 f) Antiviral agents and Anti AIDS agents
 g) Antiprotozoal agents
 h) Anthelmentics
 i) Antiscabies and Antipedicular agents

3. Sulphonamides and sulphones

4. Antimalarials

5. Antibiotics

6. Antineoplastic agents

7. Cardiovascular agents
 a) Antihypertensive agents
 b) Antianginal agents and vasodilators
 c) Antiarrhythmic agents
 d) Antihyperlipidemic agents
 e) Coagulants and Anticoagulants
 f) Endocrine

8. Hypoglycemic agents

9. Thyroid and Antithyroid agents

10. Diuretics

11. Diagnostic agents

12. Steroidal Hormones and Adrenocorticoids
3.5 MEDICINAL CHEMISTRY (PRACTICAL)

Practical: 3 Hrs./Week

1. Assays of important drugs from the course content (Any 5).
2. Preparation of medicinally important compounds or intermediates required for synthesis of drugs.
3. Monograph analysis of important drugs.
4. Determination of partition coefficients, dissociation constants and molar refractivity of compounds for QSAR analysis.

Text books (Theory)

Reference Books:

f. Current Index of Medical Specialities (CIMS) and MIMS India, MIMS, A.E. Morgan Publications (I) Pvt. Ltd, New Delhi-19.

Scheme of Practical Examination:

<table>
<thead>
<tr>
<th></th>
<th>Sessionals</th>
<th>Annual</th>
</tr>
</thead>
<tbody>
<tr>
<td>Synopsis</td>
<td>05</td>
<td>15</td>
</tr>
<tr>
<td>Major Experiment</td>
<td>10</td>
<td>25</td>
</tr>
<tr>
<td>Minor Experiment</td>
<td>03</td>
<td>15</td>
</tr>
<tr>
<td>Viva</td>
<td>02</td>
<td>15</td>
</tr>
<tr>
<td>Max Marks</td>
<td>20</td>
<td>70</td>
</tr>
<tr>
<td>Duration</td>
<td>03hrs</td>
<td>04hrs</td>
</tr>
</tbody>
</table>

Note : Total sessional marks is 30 (20 for practical sessional plus 10 marks for regularity, promptness, viva-voce and record maintenance).
3.6 PHARMACEUTICAL FORMULATIONS (THEORY)

Theory : 2 Hrs./Week

1. **Scope of the Subject**: Scope and objectives of the course: Subject deals with the formulation and evaluation of various pharmaceutical dosage forms.

2. **Objectives of the Subject**: Upon completion of the subject student shall be able to (Know, do, appreciate) –
 a. understand the principle involved in formulation of various pharmaceutical dosage forms;
 b. prepare various pharmaceutical formulation;
 c. perform evaluation of pharmaceutical dosage forms; and
 d. understand and appreciate the concept of bioavailability and bioequivalence, their role in clinical situations.

Text books (Theory)
- Pharmaceutical dosage forms, Vol, I, II and III by lachman
- Rowlings Text book of Pharmaceutics
- Tutorial Pharmacy – Cooper &Gun

Reference books (Theory)
- Remington’s Pharmaceutical Sciences
- USP/BP/IP
- Perfumes, cosmetics and soaps, Vol I, II, & III by W.A. Poucher.

3. **Detailed syllabus and lecture wise schedule:**

Title of the topic
1. Pharmaceutical dosage form- concept and classification
2. **Tablets**: Formulation of different types of tablets, tablet excipients, granulation techniques quality control and evaluation of tablets. Tablet coating, Type of coating, quality control tests for coated tablet.
3. **Capsules**: Production and filling of hard gelatin capsules, Raw material for shell, finishing, quality control tests for capsules. Production and filling of soft gelatin capsules, quality control tests for soft gelatin capsules.
4. **Liquid orals**: Formulation and evaluation of suspensions, emulsions and solutions. Stability of these preparations
5. **Parenterals** Introduction Containers used for Parenterals (including official tests) Formulation of large and small volume Parenterals Sterilization
7. Definition and concept of **Controlled and novel Drug delivery systems** with available examples, viz. parenteral, trans dermal, buccal, rectal, nasal, implants, ocular
3.6 PHARMACEUTICAL FORMULATIONS (PRACTICAL)

Practical : 3 Hrs./Week

List of Experiments :

1. Manufacture of Tablets
 a. Ordinary compressed tablet-wet granulation
 b. Tablets prepared by direct compression.
 c. Soluble tablet.
 d. Chewable tablet.

2. Formulation and filling of hard gelatin capsules

3. Manufacture of parenterals
 a. Ascorbic acid injection
 b. Calcium gluconate injection
 c. Sodium chloride infusion.
 d. Dextrose and Sodium chloride injection/ infusion.

4. Evaluation of Pharmaceutical formulations (QC tests)
 a. Tablets
 b. Capsules
 c. Injections

5. Formulation of two liquid oral preparations and evaluation by assay
 a. Solution: Paracetamol Syrup
 b. Antacid suspensions- Aluminum hydroxide gel

6. Formulation of semisolids and evaluation by assay
 a. Salicylic acid and benzoic acid ointment
 b. Gel formulation Diclofenac gel

7. Cosmetic preparations
 a. Lipsticks
 b. Cold cream and vanishing cream
 c. Clear liquid shampoo
 d. Tooth paste and tooth powders.

8. Tablet coating (demonstration)

Scheme of Practical Examination :

<table>
<thead>
<tr>
<th></th>
<th>Sessionals</th>
<th>Annual</th>
</tr>
</thead>
<tbody>
<tr>
<td>Synopsis</td>
<td>05</td>
<td>15</td>
</tr>
<tr>
<td>Major Experiment</td>
<td>10</td>
<td>25</td>
</tr>
<tr>
<td>Minor Experiment</td>
<td>03</td>
<td>15</td>
</tr>
<tr>
<td>Viva</td>
<td>02</td>
<td>15</td>
</tr>
<tr>
<td>Max Marks</td>
<td>20</td>
<td>70</td>
</tr>
<tr>
<td>Duration</td>
<td>03hrs</td>
<td>04hrs</td>
</tr>
</tbody>
</table>

Note : Total sessional marks is 30 (20 for practical sessional plus 10 marks for regularity, promptness, viva-voce and record maintenance).
Fourth Year Pharm D/ First Year Pharm D (PB)

4.1 PHARMACOTHERAPEUTICS – III (THEORY)

Theory : 3 Hrs. /Week

1. **Scope** : This course is designed to impart knowledge and skills necessary for contribution to quality use of medicines. Chapters dealt cover briefly pathophysiology and mostly therapeutics of various diseases. This will enable the student to understand the pathophysiology of common diseases and their management.

2. **Objectives**: At completion of this subject it is expected that students will be able to understand –
 a. the pathophysiology of selected disease states and the rationale for drug therapy;
 b. the therapeutic approach to management of these diseases;
 c. the controversies in drug therapy;
 d. the importance of preparation of individualised therapeutic plans based on diagnosis;
 e. needs to identify the patient-specific parameters relevant in initiating drug therapy, and monitoring therapy (including alternatives, time-course of clinical and laboratory indices of therapeutic response and adverse effects);
 f. describe the pathophysiology of selected disease states and explain the rationale for drug therapy;
 g. to summarize the therapeutic approach to management of these diseases including reference to the latest available evidence;
 h. to discuss the controversies in drug therapy;
 i. to discuss the preparation of individualised therapeutic plans based on diagnosis; and
 j. identify the patient-specific parameters relevant in initiating drug therapy, and monitoring therapy (including alternatives, time-course of clinical and laboratory indices of therapeutic response and adverse effects).

Text Books

a. Clinical Pharmacy and Therapeutics - Roger and Walker, Churchill Livingstone publication

Reference Books

a. Pathologic basis of disease - Robins SL, W.B.Saunders publication

b. Pathology and therapeutics for Pharmacists: A Basis for Clinical Pharmacy Practice - Green and Harris, Chapman and Hall publication

c. Clinical Pharmacy and Therapeutics - Eric T. Herfindal, Williams and Wilkins Publication

d. Applied Therapeutics: The clinical Use of Drugs. Lloyd Young and Koda-Kimble MA

f. Relevant review articles from recent medical and pharmaceutical literature.
4.1 PHARMACOTHERAPEUTICS – III (PRACTICAL)

Practical : 3 Hrs./Week

Practicals:
Hospital postings for a period of at least 50 hours is required to understand the principles and practice involved in ward round participation and clinical discussion on selection of drug therapy. Students are required to maintain a record of 15 cases observed in the ward and the same should be submitted at the end of the course for evaluation. Each student should present at least two medical cases they have observed and followed in the wards.

Etiopathogenesis and pharmacotherapy of diseases associated with following systems/ diseases:

Title of the topic
1 Gastrointestinal system: Peptic ulcer disease, Gastro Esophageal Reflux Disease, Inflammatory bowel disease, Liver disorders - Alcoholic liver disease, Viral hepatitis including jaundice, and Drug induced liver disorders.
2 Haematological system: Anaemias, Venous thromboembolism, Drug induced blood disorders.
3 Nervous system: Epilepsy, Parkinsonism, Stroke, Alzheimer's disease,
4 Psychiatry disorders: Schizophrenia, Affective disorders, Anxiety disorders, Sleep disorders, Obsessive Compulsive disorders
5 Pain management including Pain pathways, neuralgias, headaches.
6 Evidence Based Medicine

Assignments:
Students are required to submit written assignments on the topics given to them. Topics allotted should cover recent developments in drug therapy of various diseases. A minimum of THREE assignments [1500 – 2000 words] should be submitted for evaluation.

Format of the assignment:
1. Minimum & Maximum number of pages
2. Reference(s) shall be included at the end.
3. Assignment can be a combined presentation at the end of the academic year
4. It shall be computer draft copy
5. Name and signature of the student
6. Time allocated for presentation may be 8+2 Min.

Scheme of Practical Examination :

<table>
<thead>
<tr>
<th></th>
<th>Sessionals</th>
<th>Annual</th>
</tr>
</thead>
<tbody>
<tr>
<td>Synopsis</td>
<td>05</td>
<td>15</td>
</tr>
<tr>
<td>Major Experiment</td>
<td>10</td>
<td>25</td>
</tr>
<tr>
<td>Minor Experiment</td>
<td>03</td>
<td>15</td>
</tr>
<tr>
<td>Viva</td>
<td>02</td>
<td>15</td>
</tr>
<tr>
<td>Max Marks</td>
<td>20</td>
<td>70</td>
</tr>
<tr>
<td>Duration</td>
<td>03hrs</td>
<td>04hrs</td>
</tr>
</tbody>
</table>

Note: Total sessional marks is 30 (20 for practical sessional plus 10 marks for regularity, promptness, viva-voce and record maintenance).
4.2 HOSPITAL PHARMACY (THEORY)

Theory : 2 Hrs. /Week

1. Scope: In the changing scenario of pharmacy practice in India, for successful practice of Hospital Pharmacy, the students are required to learn various skills like drug distribution, drug dispensing, manufacturing of parenteral preparations, drug information, patient counselling, and therapeutic drug monitoring for improved patient care.

2. Objectives: Upon completion of the course, the student shall be able to –
 a. know various drug distribution methods;
 b. know the professional practice management skills in hospital pharmacies;
 c. provide unbiased drug information to the doctors;
 d. know the manufacturing practices of various formulations in hospital set up;
 e. appreciate the practice based research methods; and
 f. appreciate the stores management and inventory control.

Text books: (latest editions)
 a. Hospital pharmacy by William .E. Hassan

References:
 a. WHO consultative group report.

3. Lecture wise
 programme : Topics
 1 Hospital - its Organisation and functions
 2 Hospital pharmacy-Organisation and management
 a) Organizational structure-Staff, Infrastructure & work load statistics b) Management of materials and finance c) Roles & responsibilities of hospital pharmacist
 3 The Budget – Preparation and implementation
 4 Hospital drug policy
 a) Pharmacy and Therapeutic committee (PTC)
 b) Hospital formulary
 c) Hospital committees
 - Infection committee
 - Research and ethical committee
 d) Developing therapeutic guidelines
 e) Hospital pharmacy communication - Newsletter
 5 Hospital pharmacy services
 a) Procurement & warehousing of drugs and Pharmaceuticals b) Inventory control
 Definition, various methods of Inventory Control
 ABC, VED, EOQ, Lead time, safety stock c) Drug distribution in the hospital
 i) Individual prescription method
 ii) Floor stock method
iii) Unit dose drug distribution method
d) Distribution of Narcotic and other controlled substances
e) Central sterile supply services – Role of pharmacist

6 Manufacture of Pharmaceutical preparations
 a) Sterile formulations – large and small volume parenterals
 b) Manufacture of Ointments, Liquids, and creams
 c) Manufacturing of Tablets, granules, capsules, and powders
d) Total parenteral nutrition

7 Continuing professional development programs
 Education and training

8 Radio Pharmaceuticals – Handling and packaging

9 Professional Relations and practices of hospital pharmacist

4.2 HOSPITAL PHARMACY (PRACTICAL)

Practical : 3 Hrs./Week
1. Assessment of drug interactions in the given prescriptions
3. Drug information queries.
4. Inventory control

List of Assignments:
1. Design and Management of Hospital pharmacy department for a 300 bedded hospital.
2. Pharmacy and Therapeutics committee – Organization, functions, and limitations.
3. Development of a hospital formulary for 300 bedded teaching hospital
4. Preparation of ABC analysis of drugs sold in one month from the pharmacy.
5. Different phases of clinical trials with elements to be evaluated.
6. Various sources of drug information and systematic approach to provide unbiased drug information.
7. Evaluation of prescriptions generated in hospital for drug interactions and find out the suitable management.

Special requirements:
1. Each college should sign MoU with nearby local hospital having minimum 150 beds for providing necessary training to the students’ on hospital pharmacy activities.
2. Well equipped with various resources of drug information.

Scheme of Practical Examination:

<table>
<thead>
<tr>
<th></th>
<th>Sessionals</th>
<th>Annual</th>
</tr>
</thead>
<tbody>
<tr>
<td>Synopsis</td>
<td>05</td>
<td>15</td>
</tr>
<tr>
<td>Major Experiment</td>
<td>10</td>
<td>25</td>
</tr>
<tr>
<td>Minor Experiment</td>
<td>03</td>
<td>15</td>
</tr>
<tr>
<td>Viva</td>
<td>02</td>
<td>15</td>
</tr>
<tr>
<td>Max Marks</td>
<td>20</td>
<td>70</td>
</tr>
<tr>
<td>Duration</td>
<td>03hrs</td>
<td>04hrs</td>
</tr>
</tbody>
</table>

Note : Total sessional marks is 30 (20 for practical sessional plus 10 marks for regularity, promptness, viva-voce and record maintenance).
4.3 CLINICAL PHARMACY (THEORY)

Theory : 3 Hrs. /Week

1. Objectives of the Subject :
 Upon completion of the subject student shall be able to (Know, do, appreciate) –
 a. monitor drug therapy of patient through medication chart review and clinical review;
 b. obtain medication history interview and counsel the patients;
 c. identify and resolve drug related problems;
 d. detect, assess and monitor adverse drug reaction;
 e. interpret selected laboratory results (as monitoring parameters in therapeutics)
 of specific disease states; and
 f. retrieve, analyse, interpret and formulate drug or medicine information.

Text books (Theory)
 a. Practice Standards and Definitions - The Society of Hospital Pharmacists of Australia.
 b. Basic skills in interpreting laboratory data - Scott LT, American Society of Health System Pharmacists Inc.
 d. A text book of Clinical Pharmacy Practice; Essential concepts and skills, Dr.G.Parthasarathi etal, Orient Orient Langram Pvt.Ltd. ISBN8125026

References
 b. Clinical Pharmacokinetics - Rowland and Tozer, Williams and Wilkins Publication.

2. Detailed syllabus and lecture wise schedule: Title of the topic
 1. Definitions, development and scope of clinical pharmacy
 2. Introduction to daily activities of a clinical pharmacist
 a. Drug therapy monitoring (medication chart review, clinical review, pharmacist interventions)
 b. Ward round participation
 c. Adverse drug reaction management
 d. Drug information and poisons information
 e. Medication history
 f. Patient counseling
 g. Drug utilisation evaluation (DUE) and review (DUR)
 h. Quality assurance of clinical pharmacy services

3. Patient data analysis
 The patient's case history, its structure and use in evaluation of drug therapy & Understanding common medical abbreviations and terminologies used in clinical
practices.

4. **Clinical laboratory tests used in the evaluation of disease states, and interpretation of test results**
 a. Haematological, Liver function, Renal function, thyroid function tests
 b. Tests associated with cardiac disorders
 c. Fluid and electrolyte balance
 d. Microbiological culture sensitivity tests
 e. Pulmonary Function Tests

5. **Drug & Poison information**
 a. Introduction to drug information resources available
 b. Systematic approach in answering DI queries
 c. Critical evaluation of drug information and literature
 d. Preparation of written and verbal reports
 e. Establishing a Drug Information Centre
 f. Poisons information- organization & information resources

6. **Pharmacovigilance**
 a. Scope, definition and aims of pharmacovigilance
 b. Adverse drug reactions - Classification, mechanism, predisposing factors, causality assessment [different scales used]
 c. Reporting, evaluation, monitoring, preventing & management of ADRs
 d. Role of pharmacist in management of ADR.

7. Communication skills, including patient counselling techniques, medication history interview, presentation of cases.

8. Pharmaceutical care concepts

9. Critical evaluation of biomedical literature

10. Medication errors

4.3 CLINICAL PHARMACY (PRACTICAL)

Practical : 3 Hrs./Week
Students are expected to perform 15 practicals in the following areas covering the topics dealt in theory class.

a. Answering drug information questions (4 Nos)

b. Patient medication counselling (4 Nos)

c. Case studies related to laboratory investigations (4 Nos)

d. Patient medication history interview (3 Nos)

Assignment:

Students are expected to submit THREE written assignments (1500 – 2000 words) on the topics given to them covering the following areas dealt in theory class.

Drug information, Patient medication history interview, Patient medication counselling, Critical appraisal of recently published articles in the biomedical literature which deals with a drug or therapeutic issue.
Format of the assignment:
1. Minimum & Maximum number of pages.
2. Reference(s) shall be included at the end.
3. Assignment can be a combined presentation at the end of the academic year.
4. It shall be computer draft copy.
5. Name and signature of the student.
6. Time allocated for presentation may be 8+2 Min.

Scheme of Practical Examination:

<table>
<thead>
<tr>
<th></th>
<th>Sessionals</th>
<th>Annual</th>
</tr>
</thead>
<tbody>
<tr>
<td>Synopsis</td>
<td>05</td>
<td>15</td>
</tr>
<tr>
<td>Major Experiment</td>
<td>10</td>
<td>25</td>
</tr>
<tr>
<td>Minor Experiment</td>
<td>03</td>
<td>15</td>
</tr>
<tr>
<td>Viva</td>
<td>02</td>
<td>15</td>
</tr>
<tr>
<td>Max Marks</td>
<td>20</td>
<td>70</td>
</tr>
<tr>
<td>Duration</td>
<td>03hrs</td>
<td>04hrs</td>
</tr>
</tbody>
</table>

Note: Total sessional marks is 30 (20 for practical sessional plus 10 marks for regularity, promptness, viva-voce and record maintenance).
4.4 BIOSTATISTICS AND RESEARCH METHODOLOGY (THEORY)

Theory : 2 Hrs. /Week

1. Detailed syllabus and lecture wise schedule

1 Research Methodology
 a) Types of clinical study designs:
 Case studies, observational studies, interventional studies,
 b) Designing the methodology
 c) Sample size determination and Power of a study
 Determination of sample size for simple comparative experiments,
 determination of sample size to obtain a confidence interval of specified
 width, power of a study
 d) Report writing and presentation of data

2 Biostatistics
 2.1 a) Introduction
 b) Types of data distribution
 c) Measures describing the central tendency distributions- average, median,
 mode
 d) Measurement of the spread of data-range, variation of mean, standard
 deviation, variance, coefficient of variation, standard error of mean.

2.2 Data graphics
 Construction and labeling of graphs, histogram, piecharts, scatter plots,
 semilogarithmic plots

2.3 Basics of testing hypothesis
 a) Null hypothesis, level of significance, power of test, P value, statistical
 estimation of confidence intervals.
 b) Level of significance (Parametric data)- students t test (paired and unpaired),
 chi Square test, Analysis of Variance (one-way and two-way)
 c) Level of significance (Non-parametric data)- Sign test, Wilcoxon’s signed
 rank test, Wilcoxon rank sum test, Mann Whitney U test, Kruskal-Wall is test
 (one way ANOVA)
 d) Linear regression and correlation- Introduction, Pearsonn’s and Spearmann’s
 correlation and correlation co-efficient.
 e) Introduction to statistical software: SPSS, Epi Info, SAS.

2.4 Statistical methods in epidemiology
 Incidence and prevalence, relative risk, attributable risk

3. Computer applications in pharmacy
 Computer System in Hospital Pharmacy: Patterns of Computer use in Hospital
Pharmacy – Patient record database management, Medication order entry – Drug
labels and list – Intravenous solution and admixture, patient medication profiles,
Inventory control, Management report & Statistics.

Computer In Community Pharmacy
Computerizing the Prescription Dispensing process
Use of Computers for Pharmaceutical Care in community pharmacy
Accounting and General ledger system

Drug Information Retrieval & Storage :
Introduction – Advantages of Computerized Literature Retrieval
Use of Computerized Retrieval

Reference books:

a. Pharmaceutical statistics- practical and clinical applications, Sanford Bolton 3rd

4.5 BIOPHARMACEUTICS AND PHARMACOKINETICS (THEORY)

Theory: 3 Hrs./Week

1. Biopharmaceutics
 1. Introduction to Biopharmaceutics
 a. Absorption of drugs from gastrointestinal tract.
 b. Drug Distribution.
 c. Drug Elimination.

2. Pharmacokinetics
 2. Introduction to Pharmacokinetics.
 a. Mathematical model
 b. Drug levels in blood.
 c. Pharmacokinetic model
 d. Compartment models
 e. Pharmacokinetic study.

3. One compartment open model.
 a. Intravenous Injection (Bolus)
 b. Intravenous infusion.

4. Multicompartment models.
 a. Two compartment open model.
 b. IV bolus, IV infusion and oral administration

5. Multiple – Dosage Regimens.
 a. Repititive Intravenous injections – One Compartment Open Model
 b. Repititive Extravascular dosing – One Compartment Open model
 c. Multiple Dose Regimen – Two Compartment Open Model

 a. Introduction
 b. Factors causing Non-linearity.

7. Noncompartmental Pharmacokinetics.
 a. Statistical Moment Theory.
 b. MRT for various compartment models.
 c. Physiological Pharmacokinetic model.

8. Bioavailability and Bioequivalence.
 a. Introduction.
 b. Bioavailability study protocol.
 c. Methods of Assessment of Bioavailability
4.5 BIOPHARMACEUTICS AND PHARMACOKINETICS (PRACTICAL)

Practical : 3 Hrs./Week

1. Improvement of dissolution characteristics of slightly soluble drugs by some methods.
2. Comparison of dissolution studies of two different marketed products of same drug.
3. Influence of polymorphism on solubility and dissolution.
4. Protein binding studies of a highly protein bound drug and poorly protein bound drug.
5. Extent of plasma-protein binding studies on the same drug (i.e. highly and poorly protein bound drug) at different concentrations in respect of constant time.
6. Bioavailability studies of some commonly used drugs on animal/human model.
7. Calculation of Ka, Ke, t1/2, Cmax, AUC, AUMC, MRT etc. from blood profile data.
8. Calculation of bioavailability from urinary excretion data for two drugs.
9. Calculation of AUC and bioequivalence from the given data for two drugs.
10. In vitro absorption studies.
11. Bioequivalency studies on the different drugs marketed.(eg) Tetracycline, Sulphamethoxazole, Trimethoprim, Aspirin etc., on animals and human volunteers.
12. Absorption studies in animal inverted intestine using various drugs.
13. Effect on contact time on the plasma protein binding of drugs.
14. Studying metabolic pathways for different drugs based on elimination kinetics data.
15. Calculation of elimination half-life for different drugs by using urinary elimination data and blood level data.

References:

a. Biopharmaceutics and Clinical Pharmacokinetics by, Milo Gibaldi
c. Pharmacokinetics: By Milo Gibaldi Donald, R. MerceL Dekker Inc.
d. Hand Book of Clinical Pharmacokinetics, By Milo Gibaldi and Laurie Prescott by
 ADIS Health Science Press.
e. Biopharmaceutics and Pharmacokinetics; By Robert F Notari
f. Biopharmaceutics; By Swarbrick
g. Bio pharmaceuticals and Pharmacokinetics-A Treatise, By D. M. Brahmanark and Sunil
 B.Jaiswal, Vallabh Prakashan Pitampura, Delhi
h. Cilincal Pharmacokinetics, Concepts and Applications: By Malcolm Rowland and

Scheme of Practical Examination:

<table>
<thead>
<tr>
<th></th>
<th>Sessionals</th>
<th>Annual</th>
</tr>
</thead>
<tbody>
<tr>
<td>Synopsis</td>
<td>05</td>
<td>15</td>
</tr>
<tr>
<td>Major Experiment</td>
<td>10</td>
<td>25</td>
</tr>
<tr>
<td>Minor Experiment</td>
<td>03</td>
<td>15</td>
</tr>
<tr>
<td>Viva</td>
<td>02</td>
<td>15</td>
</tr>
<tr>
<td>Max Marks</td>
<td>20</td>
<td>70</td>
</tr>
<tr>
<td>Duration</td>
<td>03hrs</td>
<td>04hrs</td>
</tr>
</tbody>
</table>

Note: Total sessional marks is 30 (20 for practical sessional plus 10 marks for regularity, promptness, viva-voce and record maintenance).
4.6 CLINICAL TOXICOLOGY (THEORY)

Theory : 2 Hrs./Week

1. General principles involved in the management of poisoning
2. Antidotes and the clinical applications.
3. Supportive care in clinical Toxicology.
5. Elimination Enhancement.
6. Toxicokinetics.
7. Clinical symptoms and management of acute poisoning with the following agents –
 a) Pesticide poisoning: organophosphorous compounds, carbamates, organochlorines, pyrethroids.
 b) Opiates overdose.
 c) Antidepressants
 d) Barbiturates and benzodiazepines.
 e) Alcohol: ethanol, methanol.
 f) Paracetamol and salicylates.
 g) Non-steroidal anti-inflammatory drugs.
 h) Hydrocarbons: Petroleum products and PEG.
 i) Caustics: inorganic acids and alkali.
 j) Radiation poisoning
8. Clinical symptoms and management of chronic poisoning with the following agents –
 Heavy metals: Arsenic, lead, mercury, iron, copper
11. Food poisonings
12. Envenomations – Arthropod bites and stings.

Substance abuse:
Signs and symptoms of substance abuse and treatment of dependence
a) CNS stimulants :amphetamine
b) Opioids
c) CNS depressants
d) Hallucinogens: LSD
e) Cannabis group
f) Tobacco

References:
4.7. PHARMACOTHERAPEUTICS I & II (THEORY)
[For First Pharm.D. (Post Baccalaureate) only]

Theory: 3 Hrs/week

1. **Scope**- This course is designed to impart knowledge and skills necessary for contribution to quality use of medicines. Chapters dealt cover briefly pathophysiology and mostly therapeutics of various diseases. This will enable the student to understand the pathophysiology of common diseases and their management.

2. **Objectives of the Subject Upon completion of the subject student shall be able to** –

 1) know the pathophysiology of selected disease states and the rationale for drug therapy
 2) know the therapeutic approach to management of these diseases;
 3) know the controversies in drug therapy;
 4) know the importance of preparation of individualised therapeutic plans based on diagnosis; and
 5) appreciate the needs to identify the patient-specific parameters relevant in initiating drug therapy, and monitoring therapy (including alternatives, time-course of clinical and laboratory indices of therapeutic response and adverse effects).

3. **Course Materials**

 Text Books (Theory)
 Clinical Pharmacy and Therapeutics - Roger and Walker, Churchill Livingstone publication.

 Reference Books (Theory)
 2) Clinical Pharmacy and Therapeutics - Eric T. Herfindal, Williams and Wilkins Publication.
 3) Applied Therapeutics: The clinical Use of Drugs. Lloyd Young and Koda-Kimble MA].

4. **Detailed Syllabus**

 Etiopathogenesis and pharmacotherapy of diseases associated with following systems/diseases.

 Topics
 1) Cardiovascular system: Hypertension, Congestive cardiac failure, Angina Pectoris, Myocardial infarction, Hyperlipidaemias, Electrophysiology of heart and Arrhythmias.
 2) Respiratory system: Introduction to Pulmonary function test, Asthma, Chronic obstructive airways disease, Drug induced pulmonary diseases.
 3) Endocrine system: Diabetes, Thyroid diseases, Oral contraceptives, Hormone
replacement therapy, Osteoporosis.

4) General prescribing guidelines for
 a) Paediatric patients
 b) Geriatric patients.
 c) Pregnancy and breast feeding.

5) Ophthalmology: Glaucoma, Conjunctivitis- viral & bacterial.

6) Introduction to rational drug use: Definition, Role of pharmacist Essential drug concept Rational drug formulations.

7) Infectious disease: Guidelines for the rational use of antibiotics and surgical Prophylaxis, Tuberculosis, Meningitis, Respiratory tract infections, Gastroenteritis, Endocarditis, Septicemia, Urinary tract infections, Protozoal infection- Malaria, HIV & Opportunistic infections, Fungal infections, Viral infections, Gonorrhoea and Syphilis.

9) Renal system: Acute Renal Failure, Chronic- Renal Failure, Renal Dialysis, Drug induced renal disorders.

4.7. P PHARMACOTHERAPEUTICS – I & II (PRACTICAL)

 [For First Pharm.D. (Post Baccalaureate) only]

Practicals: 3 Hrs./Week

Hospital postings in various departments designed to complement the lectures by providing practical clinical discussion; attending ward rounds; follow up the progress and changes made in drug therapy in allotted patients; case presentation upon discharge. Students are required to maintain a record of cases presented and the same should be submitted at the end of the course for evaluation. A minimum of 20 cases should be presented and recorded covering most common diseases.

Assignments

Students are required to submit written assignments on the topics given to them. Topics allotted should cover recent developments in drug therapy of various diseases. A minimum of THREE assignments [1500 - 2000 words] should be submitted for evaluation.

Format of the Assignment

1) Minimum & Maximum number of pages.
2) Reference(s) shall be included at the end.
3) Assignment can be a combined presentation at the end of the academic year.
4) It shall be computer draft copy.
5) Name and signature of the student.
6) Time allocated for presentation may be 8+2 Min.

<table>
<thead>
<tr>
<th></th>
<th>Sessionals</th>
<th>Annual</th>
</tr>
</thead>
<tbody>
<tr>
<td>Synopsis</td>
<td>05</td>
<td>15</td>
</tr>
<tr>
<td>Major Experiment</td>
<td>10</td>
<td>25</td>
</tr>
<tr>
<td>Minor Experiment</td>
<td>03</td>
<td>15</td>
</tr>
<tr>
<td>Viva</td>
<td>02</td>
<td>15</td>
</tr>
<tr>
<td>Max Marks</td>
<td>20</td>
<td>70</td>
</tr>
<tr>
<td>Duration</td>
<td>03 Hrs</td>
<td>04 Hrs</td>
</tr>
</tbody>
</table>

Note: Total sessional marks is 30 (20 for practical sessional plus 10 marks for regularity, promptness, viva-voce and record maintenance).
5.1 CLINICAL RESEARCH (THEORY)

Theory: 3 Hrs. /Week

1. Drug development process:
 Introduction
 Various Approaches to drug discovery
 1. Pharmacological
 2. Toxicological
 3. IND Application
 4. Drug characterization
 5. Dosage form

2. Clinical development of drug:
 1. Introduction to Clinical trials
 2. Various phases of clinical trial.
 3. Methods of post marketing surveillance
 5. Good Clinical Practice – ICH, GCP, Central drug standard control organisation (CDSCO) guidelines
 6. Challenges in the implementation of guidelines
 7. Ethical guidelines in Clinical Research
 8. Composition, responsibilities, procedures of IRB / IEC
 9. Overview of regulatory environment in USA, Europe and India.
 10. Role and responsibilities of clinical trial personnel as per ICH GCP
 a. Sponsor
 b. Investigators
 c. Clinical research associate
 d. Auditors
 e. Contract research coordinators
 f. Regulatory authority
 11. Designing of clinical study documents (protocol, CRF, ICF, PIC with assignment)
 12. Informed consent Process
 13. Data management and its components

References:
for Good Clinical Practice.E6; May 1996.
5.2 PHARMACOEPIDEMIOLOGY AND PHARMACOECONOMICS (THEORY)

Theory : 3 Hrs. /Week

1. Pharmacoepidemiology :
 Definition and scope:
 Origin and evaluation of pharmacoepidemiology need for pharmacoepidemiology, aims and applications.
 Measurement of outcomes in pharmacoepidemiology
 Outcome measure and drug use measures
 Prevalence, incidence and incidence rate. Monetary units, number of prescriptions, units of drugs dispensed, defined daily doses and prescribed daily doses, medication adherence measurement
 Concept of risk in pharmacoepidemiology
 Measurement of risk, attributable risk and relative risk, time-risk relationship and odds ratio
 Pharmacoepidemiological methods
 Includes theoretical aspects of various methods and practical study of various methods with the help of case studies for individual methods
 Drug utilization review, case reports, case series, surveys of drug use, cross – sectional studies, cohort studies, case control studies, case –cohort studies, meta – analysis studies, spontaneous reporting, prescription event monitoring and record linkage system.
 Sources of data for pharmacoepidemiological studies
 Ad Hoc data sources and automated data systems.
 Selected special applications of pharmacoepidemiology
 Studies of vaccine safety, hospital pharmacoepidemiology, pharmacoepidemiology and risk management, drug induced birth defects.

2. Pharmacoeconomics:
 Definition, history, needs of pharmacoeconomic evaluations
 Role in formulary management decisions
 Pharmacoeconomic evaluation
 Outcome assessment and types of evaluation
 Includes theoretical aspects of various methods and practical study of various methods with the help of case studies for individual methods:
 Cost – minimization, cost- benefit, cost – effectiveness, cost utility

3. Applications of Pharmacoeconomics
 Software and case studies.
5.3 CLINICAL PHARMACOKINETICS AND PHARMACOTHERAPEUTIC DRUG MONITORING (THEORY)

Theory : 2 Hrs. /Week

1. Introduction to Clinical pharmacokinetics.

2. Design of dosage regimens:
 Nomograms and Tabulations in designing dosage regimen, Conversion from intravenous to oral dosing, Determination of dose and dosing intervals, Drug dosing in the elderly and pediatrics and obese patients.

3. Pharmacokinetics of Drug Interaction:
 a. Pharmacokinetic drug interactions
 b. Inhibition and Induction of Drug metabolism
 c. Inhibition of Biliary Excretion.

4. Therapeutic Drug monitoring:
 a. Introduction
 b. Individualization of drug dosage regimen (Variability – Genetic, Age and Weight, disease, Interacting drugs).
 c. Indications for TDM. Protocol for TDM.
 d. Pharmacokinetic/Pharmacodynamic Correlation in drug therapy.
 e. TDM of drugs used in the following disease conditions: cardiovascular disease, Seizure disorders, Psychiatric conditions, and Organ transplantations.

5. Dosage adjustment in Renal and hepatic Disease.
 a. Renal impairment
 b. Pharmacokinetic considerations
 c. General approach for dosage adjustment in Renal disease.
 d. Measurement of Glomerular Filtration rate and creatinine clearance.
 e. Dosage adjustment for uremic patients.
 f. Extracorporeal removal of drugs.
 g. Effect of Hepatic disease on pharmacokinetics.

 a. Introduction to Bayesian Theory.
 b. Adaptive method or Dosing with feed back.
 c. Analysis of Population pharmacokinetic Data.

7. Pharmacogenetics
 b. Genetic Polymorphism in Drug Transport and Drug Targets.
 c. Pharmacogenetics and Pharmacokinetics/Pharmacodynamic considerations
INTERNSHIP

1) SPECIFIC OBJECTIVES:
 i) To provide patient care in cooperation with patients, prescribers, and other members of an interprofessional health care team based upon sound therapeutic principles and evidence-based data, taking into account relevant legal, ethical, social cultural, economic, and professional issues, emerging technologies, and evolving biomedical, pharmaceutical, social or behavioral or administrative, and clinical sciences that may impact therapeutic outcomes.
 ii) To manage and use resources of the health care system, in cooperation with patients, prescribers, other health care providers, and administrative and supportive personnel, to promote health; to provide, assess, and coordinate safe, accurate, and time-sensitive medication distribution; and to improve therapeutic outcomes of medication use.
 iii) To promote health improvement, wellness, and disease prevention in co-operation with patients, communities, at-risk population, and other members of an interprofessional team of health care providers.
 iv) To demonstrate skills in monitoring of the National Health Programmes and schemes, oriented to provide preventive and promotive health care services to the community.
 v) To develop leadership qualities to function effectively as a member of the health care team organised to deliver the health and family welfare services in existing socio-economic, political and cultural environment.
 vi) To communicate effectively with patients and the community.

2) OTHER DETAILS:
 i) All parts of the internship shall be done, as far as possible, in institutions in India. In case of any difficulties, the matter may be referred to the Pharmacy Council of India, to be considered on merits.
 ii) Where an intern is posted to district hospital for training, there shall be a committee consisting of representatives of the college or university, and the district hospital administration, who shall regulate the training of such trainee. For such trainee a certificate of satisfactory completion of training shall be obtained from the relevant administrative authorities which shall be countersigned by the Principal or Dean of College.
iii) Every candidate shall be required, after passing the final Pharm.D. or Pharm.D. (Post Baccalaureate) examination as the case may be to undergo compulsory rotational internship to the satisfaction of the College authorities and University concerned for a period of twelve months so as to be eligible for the award of the degree of Pharm.D. or Pharm.D. (Post Baccalaureate), as the case may be.

3. ASSESSMENT OF INTERNSHIP:

i) The intern shall maintain a record of work which is to be verified and certified by the preceptor (teacher practitioner) under whom he works. Apart from scrutiny of the record of work, assessment and evaluation of training shall be undertaken by an objective approach using situation tests in knowledge, skills and attitude during and at the end of the training. Based on the record of work and date of evaluation, the Dean or Principal shall issue certificate of satisfactory completion of training, following which the university shall award the degree or declare him eligible for it.

ii) Satisfactory completion of internship shall be determined on the basis of the following:-

(1) Proficiency of knowledge required for each case management SCORE 0-5
(2) The competency in skills expected for providing Clinical Pharmacy Services SCORE 0-5
(3) Responsibility, punctuality, work up of case, involvement in patient care SCORE 0-5
(4) Ability to work in a team (Behavior with other healthcare professionals including medical doctors, nursing staff and colleagues) SCORE 0-5
(5) Initiative, participation in discussions, research aptitude. SCORE 0-5

<table>
<thead>
<tr>
<th>Poor</th>
<th>Fair</th>
<th>Below Average</th>
<th>Average</th>
<th>Above Average</th>
<th>Excellent</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>5</td>
</tr>
</tbody>
</table>

A Score of less than 3 in any of above items will represent unsatisfactory completion of internship.